
DRAFT: To appear in Theory of Computing Systems November 2003

Distributed Object Location in a Dynamic Network∗

Kirsten Hildrum, John D. Kubiatowicz, Satish Rao and Ben Y. Zhao
Computer Science Division, University of California at Berkeley
{hildrum, kubitron, satishr, ravenben}@cs.berkeley.edu

ABSTRACT
Modern networking applications replicate data and services widely, lead-
ing to a need for location-independent routing – the ability to route queries
to objects using names independent of the objects’ physical locations. Two
important properties of such a routing infrastructure are routing locality and
rapid adaptation to arriving and departing nodes. We show how these two
properties can be efficiently achieved for certain network topologies. To
do this, we present a new distributed algorithm that can solve the nearest-
neighbor problem for these networks. We describe our solution in the con-
text of Tapestry, an overlay network infrastructure that employs techniques
proposed by Plaxton, Rajaraman, and Richa [24].

1 Introduction
In today’s chaotic network, data and services are mobile and repli-
cated widely for availability, durability, and locality.1 This has lead
to a renewed interest in techniques for routing queries to objects
using names that are independent of their locations. The notion of
routing is that queries are forwarded from node to node until they
reach their destinations. The location-independent routing problem
has spawned a host of proposals, many of them in the context of
data sharing infrastructures such as OceanStore [17], FarSite [3],
CFS [12] and PAST [28]. To permit locality optimizations, it is im-
portant that the routing process use as few network hops as possible
and that these hops be as short as possible.

Properties that we would like from a location-independent rout-
ing infrastructure include:

1. Deterministic Location: Objects should be located if they ex-
ist anywhere in the network.

2. Routing Locality: Routes should have low stretch,2 not just
a small number of application-level hops. Sending queries to
the nearest copy across the shortest path possible is the ideal.

3. Minimality and Load Balance: The infrastructure must not
place undue stress on any of its components; this implies
minimal storage and balanced computational load.

4. Dynamic Membership: The system must adapt to arriving
and departing nodes while maintaining the above properties.

Although clearly desirable, the first property is not guaranteed by
existing peer-to-peer systems such as Gnutella [22] and FreeNet [7].

A simple object location and routing scheme would employ a
centralized directory of object locations. Servers would publish the
existence of objects by inserting entries into the directory. Clients
would send queries to the directory, which forwards them to their
destinations. This solution, while simple, induces a heavy load on
the directory server. Moreover, when a nearby server happens to
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1By locality we mean the ability to exploit local resources over remote ones
whenever possible [36].
2Stretch is the ratio between the distance traveled by a query to an object
and the minimal distance from the query origin to the object.

contain the object, the client must still interact with the potentially
distant directory server. The average routing latency of this tech-
nique is proportional to the average diameter of the network – inde-
pendent of the actual distance to the object. Worse, it is neither fault
tolerant nor scalable, since the directory becomes a single point of
both failure and contention.

Several recent proposals, Chord [30], CAN [26], Pastry [27], and
Viceroy [21] address the load aspect of this problem by distribut-
ing the directory information over a large number of nodes. In par-
ticular, they can find an object with a polylogarithmic number of
application-level network hops while ensuring that no node con-
tains much more than its share of the directory entries. Moreover,
they can support the introduction and removal of new participants
in the peer-to-peer network. Unfortunately, while these approaches
use a number of overlay hops that is polylogarithmic, the actual net-
work latencies incurred by queries can be significantly more than
those incurred by finding the object in the centralized directory.

An alternative solution is to broadcast an object’s location to ev-
ery node in the network. This allows clients to easily find the near-
est copy of the object, but requires a large amount of resources to
publish and maintain location information, including both network
bandwidth and storage. Furthermore, it requires full knowledge of
the participants of the network. In a dynamic network, maintaining
a list of participants is a significant problem in its own right.

We describe our results in the context of the Tapestry overlay
routing and location infrastructure [35, 37]. Tapestry uses as a start-
ing point the distributed data structure of Plaxton, Rajaraman, and
Richa [24], which we will refer to as the PRR scheme. Their pro-
posal yields routing locality with balanced storage and computa-
tional load. However, it does not provide dynamic maintenance
of membership. The original statement of the algorithm required
a static set of participating nodes as well as significant work to pre-
process this set to generate a routing infrastructure. Additionally,
the PRR scheme was unable to adapt to changes such as node fail-
ures. This paper extends their algorithms to a dynamic network.

1.1 Related Work
Several existing object location schemes exhibit routing locality, in-
cluding Plaxton, Rajaraman, and Richa (PRR) [24] and Awerbuch
and Peleg [1], and Rajaraman, Richa, Vöcking and Vuppuluri [25].
All of these provide the publication and deletion of objects with
only a logarithmic number of messages and guarantee a low stretch,
where stretch is defined as the ratio between the actual latency or
distance to an object and the shortest distance. The PRR scheme
finds objects with expected constant stretch for a specific class of
network topologies while ensuring that no node has too many di-
rectory entries. Awerbuch and Peleg route with within a polylog-
arithmic factor of optimal for general network topologies, but do
not balance the load. Unfortunately, both the PRR and Awerbuch-
Peleg schemes assume full knowledge of the participating nodes,
or, equivalently, they assume that the network is static. The RRVV
scheme balances the load, bounding the space at every node, and
while only a polylogarithmic number of nodes need change when
a node enters or leaves the network, they also do not give a method
to find the nodes that need to be updated.
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Scheme Insert Cost Space Stretch, Metric Hops Balanced?
CHORD [30] O(log2 n) O(n log n) - O(log n) yes
CAN [26] O(rn1/r) nr - rn1/r yes
Pastry [27] O(log2 n) O(n log n) - O(log n) yes
Viceroy [21] O(log n) O(n) - O(log n) yes
This Paper (Tapestry)

�
(log2 � ) O(n log n) - O(log n) yes

Awerbuch, Peleg[1] - O(n log3 n) O(log2 n), general O(log2 n) no
RRVV[25] O(log3 n) O(n log3 n) O(log3 n), general O(log2 n) yes
PRR [24] - O(n log n) O(1), special O(log n) yes
PRR + This Paper

�
(log2 � ) O(n log n) O(1), special O(log n) yes

PRR v.0 + This Paper - O(n log2 n)
�

(log3 � ), general O(log2 n) no

Table 1: Comparison of Object Location Systems. In this table, n is the number of nodes. For simplicity, we assume that the network
diameter is polynomial in n, and that assume the number of objects is O(n). Both stretch and hops refer to an object search. Space
assumes that the object IDs occupy a constant number of bytes. Insert cost shows the number of hops or messages needed for node
insertion; a - means the system does not provide an algorithm. In RRVV, the number of changes needed is polylogarithmic, but they
do not give an algorithm to make the changes. In most cases, the time for insertion is given with high probability. In some cases,
various messages can be sent in parallel; we did not allow for this optimization in stating the bounds in this table.

There is also an abundance of theoretical work on finding com-
pact routing tables [2, 9, 23, 33] whose techniques are closely re-
lated to those in this paper. See [11] for a survey. A recent and
closely related paper is that of Thorup and Zwick, who showed
that a sampling based scheme similar to that of PRR could be used
to find small stretch routing tables and/or answer approximate dis-
tance queries in arbitrary metric spaces.3

Most of the recent work on peer-to-peer networks ignore stretch.
Chord [30] constructs a distributed lookup service using a routing
table of logarithmic size. Nodes are arranged into a large virtual
circle. Each node maintains pointers to predecessor and successor
nodes, as well as a logarithmic number of “chords” which cross
greater distances within the circle. Queries are forwarded along
chords until they reach their destination. CAN [26] places objects
into a virtual, high-dimensional space. Queries are routed along
axes in this virtual space until they reach their destination. Pas-
try [27] is loosely based on the PRR scheme, routing queries via
successive resolution of digits in a high-dimensional name space.
While its overlay construction leverages network proximity met-
rics, it does not provide the same stretch as the PRR scheme in
object location. Viceroy [21] builds a constant-degree DHT based
on the butterfly. A recent paper by Li and Plaxton [18] presents
a simplified version of the PRR scheme that may perform well in
practice. All of these schemes can find objects with a polylogarith-
mic number of application-level network hops, while ensuring that
no node contains more than its share of directory entries. In ad-
dition, Chord and CAN have run-time heuristics to reduce object
location cost, so they may perform well in practice. Finally, all of
these systems support the introduction and removal of nodes.

Recent peer-to-peer applications can locate objects in a dynamic
network. Gnutella [22] utilizes a bounded broadcast mechanism to
search neighbors for documents. FreeNet [7] utilizes a chaotic rout-
ing scheme in which objects are published to a set of nearest neigh-
bors and queries follow gradients generated by object pointers; the
behavior of FreeNet appears to converge somewhat toward the PRR
scheme when a large number of objects are present.4 Neither of
these techniques are guaranteed to find objects.

Table 1 summarizes related work alongside our contributions.
Systems with no entry in the “Stretch, Metric” column do not con-
sider stretch at all; those with “special” assume the metric space
has a certain low-expansion property described in Section 3.

3A network topology gives a metric space.
4This is a qualitative statement at this time.

1.2 Results
Our goals are not only to derive the best possible asymptotic results,
but also to analyze the simple schemes that are the basis of the PRR
and the Tapestry algorithms. This paper includes three main results:

• We present a simplification of the PRR scheme for object
location. We cannot prove that this object location scheme
meets the same bounds on stretch as the PRR scheme; how-
ever, it appears to perform well in practice.

• We extend this scheme (as well as the PRR approach) to deal
with a changing participant set. We allow nodes to arrive and
depart while maintaining the ability to locate existing objects
and publish new objects. This works for a slightly broader
class of metric spaces than assumed by PRR.

• We observe that a static version of the PRR scheme can be
used for general metric spaces (i.e., spaces that do not meet
the conditions assumed by PRR) to get results similar to
those of Awerbuch and Peleg [1].

Table 1 gives a summary of some of the previous results along with
ours. Note that our result for general metrics can be improved using
results of Thorup and Zwick [32] to use only O(n log n) space.

Techniques: The crux of our method for inserting nodes into the
network lies in an algorithm for maintaining nearest neighbors in a
restricted metric space. Our approach is similar in spirit to that of
Karger and Ruhl [15], who give an algorithm for answering nearest
neighbor queries in a similarly restricted metric space.5

The idea behind both the nearest-neighbor algorithm of Karger
and Ruhl and the one presented here is to find the nearest neighbor
by repeatedly finding some node halfway between the current node
and the query node. If this is done log n times, one finds the closest
node. The restricted metric spaces considered in both these papers
mean that there is a substantial fraction of nodes at about the right
distance, so halving the distance can be implemented by sampling
from nodes within the correct radius. The difficulty is maintaining
a structure to do the sampling in a dynamic network.

Karger and Ruhl suggested this general approach in [15] and then
present a specific data structure to accomplish it. Their data struc-
ture uses a random permutation to maintain the random sampling–
an approach is reminiscent of the Chord network infrastructure. Our
search algorithm also aims to halve the distance at each step, but we
5Clarkson also presented a very similar approach in[8].
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build a different data structure with a different search algorithm. In
particular, we use random names to build a tree (for load balancing
purposes, many trees) on which we search. This set of trees is the
same as the set of trees used in the object location system described
in this paper, which means that our search algorithm can share the
data structure with the object location algorithm.

Recently, Krauthgamer and Lee [16] developed a simple and de-
terministic nearest-neighbor data structure that has applications in
a broader class of metric spaces. Their data structure is somewhat
similar to the one described in this paper, but it is not yet clear if
their data structure can be distributed in a load-balanced way.

We also prove that an alternate scheme by Plaxton, Rajaraman,
and Richa (called PRR v.0 in Table 1) gives a low stretch solution
for general metric spaces. This follows from arguments similar to
those used by Bourgain [4] for metric embeddings. In particular,
we show that this scheme leads to a covering of the graph by trees
such that for any two nodes u and v at distance δ, they are in a tree
of diameter δ log n. Indeed, by modifying the PRR scheme along
the lines proposed by Thorup and Zwick [32] one can improve the
space bounds by a logarithmic factor, but we do not address this
issue here.

The remainder of this paper is divided as follows: Section 2 de-
scribes the details of Tapestry, highlighting differences with the
PRR scheme and introducing concepts and terminology for the
remainder of the paper. Section 3 describes how to solve the in-
cremental nearest neighbor problem. Section 4 explains how this
is used as part of inserting a node. Section 5 gives algorithms for
deletion. Section 6 discusses the issues in applying these theoret-
ical results to physical networks. Section 7 gives a simple proof
that PRR v.0 scheme has polylogarithmic stretch for general metric
spaces. Section 8 concludes.

2 The Tapestry Infrastructure
Tapestry [37, 35] is the wide-area location and routing infrastruc-
ture of OceanStore [17]. Tapestry assumes that nodes and objects
in the system can be identified with unique identifiers (names), rep-
resented as strings of digits. Digits are drawn from an alphabet of
radix b. Identifiers are uniformly distributed in the namespace. We
will refer to node identifiers as node-IDs and object identifiers as
globally unique identifiers (GUIDs). For a string of digits α, let |α|
be the number of digits in that string.

Tapestry inherits its basic structure from the data location scheme
of Plaxton, Rajaraman, and Richa (PRR) [24]. As with the PRR
scheme, each Tapestry node contains pointers to other nodes (neigh-
bor links), as well as mappings between object GUIDs and the
node-IDs of storage servers (object pointers). Queries are addressed
with GUIDs and routed from node to node along neighbor links
until an appropriate object pointer is discovered; the query is then
forwarded along neighbor links to the destination node. Thus, every
query ultimately resolves to a node-ID.

2.1 The Tapestry Routing Mesh
The Tapestry routing mesh is an overlay network between partici-
pating nodes. Each Tapestry node contains links to a set of neigh-
bors that share prefixes with its node-ID. Thus, neighbors of node-
ID α are restricted to nodes that share prefixes with α, that is, nodes
whose node-IDs β ◦ δ satisfy β ◦ δ′ ≡ α for some δ, δ′. Neighbor
links are labeled by their level number, which is one greater than
the number of digits in the shared prefix, or (|β| + 1). Figure 1
shows a portion of the routing mesh. For each forward neighbor
pointer from a node A to a node B, there will a backward neighbor
pointer (or “backpointer”) from B to A.

Neighbors for node A are grouped into neighbor sets. For each
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Figure 1: Tapestry Routing Mesh. Each node is linked to other
nodes via neighbor links, shown as solid arrows with labels. La-
bels denote which digit is resolved during link traversal. Here,
node 4227 has an L1 link to 27AB, resolving the first digit, an
L2 link to 44AF, resolving the second digit, etc. Using the nota-
tion of Section 2.1, 42A2 is a (42,A) neighbor of 4227.

prefix β of A’s ID and each symbol j ∈ [0, b − 1], the neighbor
set NA

β,j contains Tapestry nodes whose node-IDs share the prefix
β ◦ j. We will refer to these as (β, j) neighbors of A or simply
(β, j) nodes. For each j and β, the closest node in NA

β,j is called
the primary neighbor, and the other neighbors are called secondary
neighbors. When context is obvious, we will drop the superscript
A. Let l = |β| + 1. Then, the collection of b sets, NA

β,j , form the
level-l routing table. There is a routing table at each level, up to
the maximum length of node-IDs. Membership in neighbor sets is
limited by a constant parameter R ≥ 1: |NA

β,j | ≤ R, and of all
the nodes that could be in the neighbor set, we choose the closest.
Further, |NA

β,j | < R implies NA
β,j contains all (β, j) nodes. This

gives us the following:

PROPERTY 1 (CONSISTENCY). If NA
β,j=∅, for any A, then

there are no (β, j) nodes in the system. We refer to this as a “hole”
in A’s routing table at level |β| + 1, digit j.

Property 1 implies that the routing mesh is fully connected. Mes-
sages can route from any node to any other node by resolving the
destination node-ID one digit at a time. Let the source node be
A0 and destination node be B, with a node-ID equal to β ≡ j1 ◦
j2 . . . jn. If ε is the empty string, then routing proceeds by choos-
ing a succession of nodes: A1 ∈ N

A0

ε,j1
(first hop), A2 ∈ N

A1

j1,j2

(second hop), A3 ∈ N
A2

j1◦j2,j3
(third hop), etc. This construction

gives us locality, as described in the following property.

PROPERTY 2 (LOCALITY). In both Tapestry and PRR, each
NA
β,j contains the closest (β, j) neighbors as determined by a given

metric space. The closest neighbor with prefix β ◦ j is the primary
neighbor, while the remaining ones are secondary neighbors.

Property 2 yields the important locality behavior of both the
Tapestry and PRR schemes. Further, it yields a simple solution to
the static nearest-neighbor problem: Each node A can find its near-
est neighbor by choosing from the set � j∈[0,b−1]N

A
ε,j , where ε

represents the empty string. Section 3 will discuss how to maintain
Property 2 in a dynamic network.

2.2 Routing to Objects with Low Stretch
Tapestry maps each object GUID, ψ, to a set of root nodes:
Rψ = MAPROOTS(ψ). We call Rψ the root set for ψ, and each
A ∈ Rψ is a root node for ψ. It is assumed that MAPROOTS(ψ)
can be evaluated anywhere in the network.

To function properly, MAPROOTS(ψ) must return nodes that ex-
ist. The size of a root set, |Rψ| ≥ 1, is small and constant for all
objects. In the simplest version of Tapestry, |Rψ| = 1. In this case,
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Figure 2: Publication in Tapestry. To publish object 4378,
server 39AA sends publication request towards root, leaving a
pointer at each hop. Server 4228 publishes its replica similarly.
Since no 4378 node exists, object 4378 is rooted at node 4377.
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Figure 3: Routing in Tapestry: Three different location requests.
For instance, to locate GUID 4378, query source 197E routes
towards the root, checking for a pointer at each step. At node
4361, it encounters a pointer to server 39AA.

we can speak of the root node for a given node ψ. For this to be
sensible, we must have the following property:

PROPERTY 3 (UNIQUE ROOT SET). The root set,Rψ , for ob-
ject ψ must be unique. In particular, MAPROOTS(ψ) must generate
the same Rψ , regardless of where it is evaluated in the network.

Storage servers publish the fact that they are storing a replica by
routing a publish message toward each A ∈ Rψ . Publish messages
are routed along primary neighbor links. At each hop, publish mes-
sages deposit object pointers to the object. Unlike the PRR scheme,
Tapestry maintains all object pointers for objects with duplicate
names (i.e., copies). Figure 2 illustrates publication of two replicas
with the same GUID. To provide fault-tolerance, Tapestry assumes
that pointers are soft-state, that is, pointers expire and objects must
be republished (published again) at regular intervals. Republishing
may be requested if something changes in the network.

Queries for object ψ route toward one of the root nodes A ∈
Rψ along primary neighbor links until they encounter an object
pointer for ψ, then route to the located replica. If multiple pointers
are encountered, the query proceeds to the closest replica to the
current node (i.e., the node where the object pointer is found). At
the beginning of the query, we select a root randomly from Rψ .
Figure 3 shows three different location paths. In the worst case, a
location operation involves routing all the way to root. However, if
the desired object is close to the client, then the query path will be
very likely to intersect the publishing path before reaching the root.

In the PRR scheme, queries route by examining all secondary
neighbors before proceeding along the primary link toward the root.
The number of secondary neighbors is set according to their metric
space, but bounded by a constant. The following theorem shows an
important property shared by PRR and Tapestry.

THEOREM 1. PRR and Tapestry can perform location-inde-
pendent routing, given Property 3.

PROOF. The publishing process ensures that all members of
Rψ contain mappings (object pointers) between ψ and every server
which contains ψ. Thus, a query routed toward any A ∈ Rψ will
(in the worst case) encounter a pointer for ψ upon reaching A.

OBSERVATION 1. (Fault Tolerance) If |Rψ| > 1 and the names
in Rψ are independent of one another, then we can retry object
queries and tolerate faults in the Tapestry routing mesh.

In a general metric space, it is difficult to make claims about the
performance of such a system. PRR restrict their attention to metric
spaces with a certain even-growth property: they assume that for a
given point A, the ratio of the number of points within 2r of A
and the number of points within distance r of A is bounded above
and below by constants. (Unless all points are within 2r of A.)
Given this constraint, [24] shows the average distance traveled in
locating an object is proportional to the distance from that object,
that is, queries exhibit O(1) stretch. Their data structure, however,
ignores many issues important in practical systems. Tapestry is a
simplification that is easier to implement and seems to provide low
stretch in practice [35, 37].

2.3 Surrogate Routing
The procedures for publishing and querying documents outlined
in Section 2.2 do not require the actual membership of Rψ to be
known. All that is required is to be able to compute the next hop
toward the root from a given position in the network. As long as this
incremental version of MAPROOTS() is consistent in its behavior,
we achieve the same routing and locality behavior as in Section 2.2.
Assume that INCRMAPROOTS(ψ,B) produces an ordered list of
the next hop toward the roots of ψ from node B.

In the PRR scheme, MAPROOTS(ψ) produces a single root node
A which matches in the largest possible number of prefix bits with
ψ. Ties are broken by consulting a global order of nodes. The PRR
scheme specifies a corresponding INCRMAPROOTS() function as
follows: the neighbor sets, N , are supplemented with additional
root links that fill holes in the routing table. To route a message
toward the root node, PRR routes directly to ψ as if it were a node
in the Tapestry mesh. Assuming that the supplemental root links are
consistent with one another, every publish or query for document
ψ will head toward the same root node.

We call this process surrogate routing, since it involves routing
toward ψ as if it were a node, then adapting when the process fails.
Roots reached in this way are considered surrogate roots of ψ.

Localized Routing Decisions: In a dynamic network, maintenance
of routing pointers can be problematic. In Tapestry, we have cho-
sen to focus on Property 1 as our primary consistency constraint.
Thus, in contrast to the original PRR scheme, we do not maintain
extra route links to aid in locating root nodes. Instead, all routing
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method ACQUIRENEIGHBORTABLE (NewNodeName, NewNodeIP, PSurrogateName, PSurrogateIP)
1 α← GREATESTCOMMONPREFIX(NewNodeName, PSurrogateName)
2 maxLevel← LENGTH(α)
3 list← ACKNOWLEDGEDMULTICAST [on PSurrogateIP] (α, SENDID(NewNodeIP, NewNodeName))
4 BUILDTABLEFROMLIST(list, maxLevel)
5 for i = maxlevel - 1 to 0
6 list← GETNEXTLIST(list, i, NewNodeName, NewNodeIP)
7 BUILDTABLEFROMLIST(list, i)

end ACQUIRENEIGHBORTABLE

method GETNEXTLIST (neighborlist, level, NewNodeName, NewNodeIP)
1 nextList← ∅
2 for n ∈ neighborlist
3 temp← GETFORWARDANDBACKPOINTERS(n, level))
4 ADDTOTABLEIFCLOSER [on n] (NewNodeName, NewNodeIP)
5 nextList← KEEPCLOSESTK(temp∪ nextList)
6 return nextList

end GETNEXTLIST

Figure 4: Building a Neighbor Table. A few words on notation: FUNCTION [on destination] represents a call to run
FUNCTION on destination, variables in italics are single-valued, and variables in bold are vectors. The Acknowledged-
Multicast function is described in Figure 8.

decisions are made based on the current routing table, the source
and destination GUIDs, and information collected along the route
by the query (e.g., the number of digits resolved so far).

We highlight two variants on localized routing; others are cer-
tainly possible. Both of them proceed by routing one digit at a time
toward the destination GUID, that is, each network hop resolves
one additional digit toward the destination. Since there is no back-
tracking, these schemes are guaranteed to complete.

• Tapestry Native Routing: We route one digit at a time. When
there is no match for the next digit, we route to the next
filled entry in the same level of the table, wrapping around
if needed. For example, if the next digit to be routed is a 3,
and there is no entry, try 4, then 5, and so on.

• Distributed PRR-like Routing: We route one digit at a time
as follows:

1. Before first hole: Route one digit at a time as above.

2. At first hole: Route along an existing neighbor link that
matches the desired digit in as many significant bits as
possible. If there is more than one such route, pick the
route with the numerically higher digit.

3. After first hole: Always pick a routing-table entry with
the numerically highest available digit.

This technique routes to the root node with the numerically
largest node-ID that matches the destination GUID in the
most significant bits.

For both of these schemes, routing stops if the current node is the
only node left at and above the current level in the routing table; the
resulting node is the root node. Such localized schemes are simpler
than PRR under inserts and deletes. In addition, the Tapestry Native
Routing scheme may have better load balancing properties.

THEOREM 2. Suppose Property 1 holds. Then the Tapestry ver-
sion of surrogate routing will produce a unique root.

PROOF. Proof by contradiction. Suppose that messages for an
object with ID X end routing at two different nodes, A and B. Let
β be the longest common prefix of A and B, and let i be the length
of β. Then, letA′ and B′ be the nodes that do the (i+ 1)st routing

step; that is, the two nodes that send the message to different digits.
Notice that after this step, the first (i+1) digits of the prefix remain
constant in all further routing steps. Both NA′

β,∗ and NB′

β,∗ must
have the same pattern of empty and non-empty entries. That is, if
NA′

β,j is empty, then NB′

β,j must also be empty, by Property 1. So
both A′ and B′ send the message on a node with the same (i+1)st
digit, a contradiction.

A similar proof is possible for the distributed PRR-like scheme.
Localized routing may introduce additional hops over PRR; how-
ever, the number of additional hops is independent of n and in ex-
pectation is less than 2 [37]. Notice the following:

OBSERVATION 2. (Multiple Roots) Surrogate routing general-
izes to multiple roots. First, a pseudo-random function is employed
to map the initial document GUID ψ into a set of identifiers ψ0,
ψ1,. . .ψn. Then, to route to root i, we surrogate route to ψi.

2.4 A Comparison between Tapestry and PRR
In this section, we quickly outline the differences between Tapestry
and PRR. With the exception of some changes to the maintenance
of object pointers, the key ways that Tapestry differs from PRR re-
volve around eliminating the requirements of a static network and
adding provisions to handle faults in a graceful manner, both of
which are required for a system deployable on real networks. To
further clarify the contributions of this work, a few of the key dif-
ferences are noted here.

First, Tapestry nodes keep pointers to all copies of a given object.
In PRR, a node stores at most one pointer to each object, regardless
of how many copies are in the network. As a result, deleting an
object is easier in Tapestry than in PRR, but comes with an increase
in storage. Further, this property allows Tapestry applications to
exploit multiple object replicas; queries can be multicast to every
object of a given name or to a “close” subset of objects.

Second, PRR makes use of secondary neighbors in its core ob-
ject location algorithms, while Tapestry uses them primarily for
fault-resilience. When searching for an object, PRR searches on
the primary and secondary neighbors before taking an additional
hop towards the object root. It is worth noting that this is equiva-
lent to publishing on all the secondary neighbors, but only search-
ing the primary neighbors. In contrast, Tapestry keeps for every
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entry, a small number (in the current implementation, two) of ad-
ditional backup neighbor links for fault-resilience. All publishing
and search takes place only on the primary links.

Third, as described above, surrogate routing is different in the
two systems. First, PRR assumes a static set of nodes with precom-
puted surrogates, while Tapestry’s algorithms maintain the surro-
gate routes as part of the insertion process. PRR can be extended,
however, with our dynamic algorithms while maintaining the same
surrogate routing scheme. Tapestry surrogate routing does slightly
better at load balancing of objects across the surrogate roots.

Finally, Tapestry is implemented and running, and downloads are
available.

3 Building Neighbor Tables
Building the neighbor table is perhaps the most complex and inter-
esting part of the insertion process, so we present it first. The prob-
lem is to build the neighbor sets, NA

β,j for a new node A. These
sets must satisfy Properties 1 and 2. This can be seen as solving the
nearest neighbor problem for many different prefixes. One solution
is to simply use the method of Karger and Ruhl [15] many times,
once for each prefix. This would essentially require each node to
participate in O(log n) Karger-Ruhl data structures, one for each
level of the neighbor table. This would require O(log2 n) space.

The method we present below has lower network distance than a
straightforward use of Karger and Ruhl (although the same number
of network hops) and incurs no additional space over the PRR data
structures.

As in [24], we adopt the following network constraint. LetBA(r)
denote the ball of radius r around A; i.e., all points within distance
r of A, and |BA(r)| denote the number of such points. We assume:

|BA(2r)| ≤ c |BA(r)| , (1)

for some constant c. PRR also assume that |BA(2r)| ≥ c′ |BA(r)|,
but that assumption is not needed for our extensions. Notice that
our expansion property is almost exactly that used by Karger and
Ruhl [15]. We also assume the triangle inequality in network dis-
tance, that is

d(X,Y ) ≤ d(X,Z) + d(Z, Y )

for any set of nodes X,Y , and Z. Our bounds in terms of network
latency or network hops and ignore local computation in our calcu-
lations. None of the local computation is time-consuming, so this
is a fair measure of complexity.

3.1 The Algorithm
Figure 4 shows how to build neighbor tables. In words, suppose
that the longest common prefix of the new node and any other node
in the network is α. Then we begin with the list of all nodes with
prefix α. (We explain how to get this list in the next section.) We
proceed by getting similar lists for progressively smaller prefixes,
until we have the closest k nodes matching the empty prefix.

Let a level-i node be a node that shares a length i prefix with α.
Then, to go from the level-(i+1) list to the level-i list, we ask each
node on the level-(i + 1) list to give us all the level-i nodes they
know of (we ask for both forward and backwards pointers). Note
that each level-i node must have at least one level-(i + 1) node in
its neighbor table, so following the backpointers of all level-(i+1)
nodes gives us all level-i nodes. We then contact these nodes, and
sort them according to their distance from the inserting node. Each
node contacted this way also checks to see if the new node should
be added to its own table (line 4). We then trim this list, keeping
only the closest k nodes. If b > c2, then Lemma 1 says there is
some k = O(log n) such that with high probability, the lists at
each level contain exactly the k closest nodes.

We then use these lists to fill in the neighbor table. This happens
in line 7 of ACQUIRENEIGHBORTABLE.More precisely, recall that
level i of the table consists of nodes with the prefix αi−1 ◦ j, where
αi−1 is the first (i − 1) digits of the node’s prefix. To fill in level
i of the neighbor table, we look in the level-(i − 1) list. For j ∈
[0, b − 1], we keep the closest R (αi−1, j) nodes (R is defined in
Section 2.1).6

3.2 A Proof of Correctness
Theorems 3 and 4 prove that with high probability, the above al-
gorithm correctly creates the new node’s neighbor table and cor-
rectly updates the neighbor tables of the existing nodes. Theorem 3
uses Lemmas 1 and 2 to show that the new node’s table gets built
correctly, and Theorem 4 argues that the tables of other nodes are
updated correctly.

The following lemma shows that if GETNEXTLIST is given the
k closest level-(i+ 1) nodes, it finds the k closest level-i nodes.

LEMMA 1. If c is the expansion constant of the network, and
c2 < b, then given a list of the closest k level-(i+1) nodes, we can
find the k closest level-i nodes, for k = O(log n). In particular, if
k ≥ 24(a+1)b log n

(1−c2/b)2
, the failure probability is bounded by 1/na.

PROOF. Let δi be the radius of the smallest ball around the new
node containing k level-i matches. We would like to show that any
node A inside the ball must point to a level-(i + 1) node within
δi+1 of the new node. If that is the case, then we will query A’s
parent, and so find A itself.

For the rest of the proof to work, we need that at least one of the
k level-i nodes is also a level-(i + 1) node. The probability this is
not true is (1 − 1/b)k ≤ exp(−k/b) ≤ exp(−(a + 1) log n) ≤
1/(na+1). For the remainder of the proof, we assume at least one
of the k level-i nodes is also an level-(i+1) node. Then the distance
between A and its nearest level-(i + 1) node is no more than 2δi,
since both A and the level-(i+1) node are within the ball of radius
δi. By the triangle inequality, the distance between the new node
and A’s parent is no more than 2δi+δi = 3δi. (See Figure 5.) This
means that as long as 3δi < δi+1, A must point to a node inside
δi+1. Since we query all level-(i + 1) in δi+1, this means we will
query A’s parent, and so find A.

To complete the proof, we need 3δi < δi+1 with high probabil-
ity. This is the expected behavior; given a ball with k level-i nodes,
doubling the radius twice gets no more than c2k nodes, and so,
no more than k(c2/b) level-(i + 1) nodes. Since c2/b < 1, this
means that the quadrupled ball has less than k level-(i + 1) nodes,
or equivalently, the ball containing k level-(i + 1) nodes is at least
three (really, four) times the size of the ball with k level-i nodes.
The following turns this informal argument into a proof.

First, recall that c2/b < 1. Pick λ′ and λ as follows:

λ = 1
2
(1− c2/b) < 1

2

λ′ = λ(2− c2/b) < 1

Note that λ′ > λ and (1− λ′)b/c2 = b/c2(1− 2λ) + λ = 1 + λ.
Notice that we can write k as a function of λ; in particular k =
6(a+1)b log n

λ2 .

Now, let l be (1−λ′)−1kbi. This is the required number of nodes
such that one expects (1−λ′)−1k of the nodes to be level-i nodes.

Let Lreal be the random variable representing total volume of
the ball (i.e., the number of nodes in the ball) containing k level-i
nodes. If 3δi < δi+1, then we are done, so in the rest of the proof,
we argue that the probability that 3δi ≥ δi+1 is small.

6While the algorithm presented here is here is sensitive to failures, a slight
modification can make the algorithm substantially more robust, see [13]
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Figure 5: Figure for Theorem 3. If 3δi is less than δi+1, then A
must point to a node within di+1.
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Figure 6: Figure for Theorem 4. The larger ball around A con-
tains O(log n) nodes, while the smaller ball contains none.

We use the fact that Pr[3δi ≥ δi+1] is the same as

Pr[3δi ≥ δi+1 |Lreal > l ] · Pr[Lreal > l]

+ Pr[3δi ≥ δi+1 |Lreal ≤ l ] · Pr[Lreal ≤ l].

We will bound one term from each product.

We show Pr[Lreal > l] ≤ 1/na+1. Let Xm be a random variable
representing the number of level-i nodes in m nodes. Notice
that the Pr[Lreal > l] is bounded from above by Pr[Xl < k],
since if Lreal > l, then it must be that the closest l nodes to the
new node do not contain k level-i nodes.

But

Pr[Xl < k] = Pr[Xl < (1− λ′)E[Xl]].

Using a Chernoff bound, this is less than

exp(−λ′2E[Xl]/2) ≤ exp(−λ′2k/2) ≤ exp(−λ2k/2).

Substituting for k, this becomes

exp

�
−

6(a+ 1)b log nλ2

2λ2  ≤ exp(−3(a+1) log n) ≤ 1/na+1.

We show Pr[3δi ≥ δi+1 |Lreal ≤ l ] ≤ 2/na+1. Consider the ball
of radius 3δi around the new node. If this ball contains k level-
(i + 1) nodes (δi+1 is smaller that 3δi), then the ball of radius
4δi must also contain at least k level-(i+ 1) nodes.

However, we know the volume (that is, the number of
nodes) of this ball is less than c2l by Equation 1 and the fact
Lreal ≤ l. Let Ym be the number of i + 1 nodes in m trials.
Then, rewriting our goal with this notation, we wish to bound
Pr[Yc2l ≥ k |Xl ≥ k ]. (Notice that Yc2l is not independent of
Xl.) We can write that the Pr[A |B ] = Pr[A∩B]

Pr[B]
≤ Pr[A]

Pr[B]
, so it

suffices to bound
Pr[Y

c2l
≥k]

Pr[Xl≥k]
. We already bounded the denomi-

nator, so next we wish to bound Pr[Yc2l ≥ k].

Since

E[Yc2l] =
c2

b
E[Xl] =

kc2

b(1− λ′)
=

k

1 + λ
.

we get that

Pr[Yc2l ≥ k] = Pr[Yc2l ≥ (1+λ)E[Yc2l]] ≤ exp(−λ2E[Yc2l]/3).

But E[Yc2l] = k/(1 + λ) ≥ k/2, so Pr[Yc2l ≥ k] ≤
exp(−λ2k/6). Substituting k, we get that this that this is
bounded by exp(−(a+ 1) log n) = 1/(na+1).

So Pr[3δi ≥ δi+1 |Lreal ≤ l ] ≤
Pr[Y

c2l
≥k]

Pr[Xl≥k]
≤ 1/na+1

1−1/na+1 ≤
2

na+1 . (So long as na+1 > 2)

Recall that we wish to bound Pr[3δi ≥ δi+1], and we know that

Pr[3δi ≥ δi+1] =

Pr[3δi ≥ δi+1 |Lreal > l ]Pr[Lreal > l]

+ Pr[3δi ≥ δi+1 |Lreal ≤ l ]Pr[Lreal ≤ l]

≤ 1 · 1/na+1 + 2/na+1 · 1

≤ 1/na

where the last step follows so long as n ≥ 3.

Next, we show that given the k closest nodes matching in i digits,
we can fill in level (i+1) of the neighbor table if k is large enough.
This means that given a list containing the k closest nodes with
prefix β, for k = O(log n), there are at least R (β, j) nodes for
each j ∈ [0, b− 1]. (Recall that R was defined in Section 2.1.)

LEMMA 2. For k = O(log n) and R = o(log n) the list of the
closest k β nodes to a given node A contains � j N

A
β,j with high

probability. In particular, for k ≥ 8(a + 1)b log n, the probability
it does not is less than 1/na.

PROOF. For any given j, let Xj be a random variable repre-
senting the number of (β, j) nodes in the list. In expectation, this is
k/b = 8(a + 1) log n. We want to bound Pr[Xj ≤ R], and since
R = o(log n), we have R ≤ 1

2
k/b.

Thus,

Pr[Xj ≤ R] ≤ Pr[Xj ≤
1

2
E[Xj ]] ≤ exp ! − �

1

2  2
E[Xj ]

2 " .

The last step uses a Chernoff bound. We can then simplify the last
equation and say that Pr[Xj ≤ R] ≤ 1/na+1.

Now, we apply a union bound over all the b possible j to get
that the probability that any j has less than R nodes in the list is
bounded by b/na+1, and since we can assume b < n, this gives us
a bound of 1/na, which is the desired result.

Finally, we can combine these two lemmas to prove the follow-
ing theorem:

THEOREM 3. If c is the expansion constant of the network, b >
c2 (where b is the digit size), and R = o(log n), then there is a
k = O(log n) for which the algorithm of Figure 4 will produce the
new node’s correct neighbor table with probability 1/na for any
constant a.

PROOF. By Lemma 1, there is a k1 such that the probability
that the ith list is incorrectly generated from the (i+1)st list is less
than 1/2na+1. Since there are log n levels, the probability that any
level fails is less than log n

2na+1 ≤ 1/(2na).
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Second, by Lemma 2, for some k2 = O(log n), the probability
that we are unable to fill the neighbor table with R = o(log n)
neighbors from lists of length k2 is less than 1/(2na+1). Since
there are log n levels to fill, the probability that any of the levels is
left unfilled is bounded by log n

2na+1 ≤ 1/2na.
If we choose k = max(k1, k2), the probability that either of

the lists are not correct or the table cannot be filled is bounded by
1/(2na) + 1/(2na) = 1/na. This proves the theorem.

The new node also causes changes to the neighbor tables of other
nodes. We instruct any node that is a candidate for the new node’s
table to check if adding the new node could improve its own neigh-
bor table. This happens in line 4 of Figure 4. It remains to show that
with high probability, line 4 of Figure 4 updates all nodes that need
to be updated. In particular, we show that there is a k = O(log n)
such that any node that needs to update its level-i link is one of the
closest k nodes of level-i with high probability.

THEOREM 4. If a new node B is a (α, j) neighbor of A (so B
is one of the R closest nodes to A with prefix α ◦ j), then with high
probability, A is among the k = O(log n) closest α-nodes toB. In
particular, for k = 16abc log n, and R = o(log n), the probability
A is not among the closest k nodes is 1/na.

PROOF. We will show that the probability A is not among the
k closest α-nodes to B can be made arbitrarily small. Let d =
d(A,B) or the distance betweenA andB. Consider the ball around
A of radius d. (Shown in Figure 6). SinceB is in the neighbor table
of A, there are less than R (α, j) nodes in this ball. Further, notice
that the ball around B containing k α-nodes does not contain A (or
else the proof is done), so its radius must be less than d. Finally,
consider the ball around A of radius 2d. It completely contains the
ball around B.

If A is not among the closest k nodes, then the ball around A
of radius d contains no more than R (α, j) nodes, while the ball
around B of radius d contains k nodes of prefix α. We will show
the probability of this is very small. Since R = o(log n), for suffi-
ciently large n, we can assume that R ≤ 2a log n.

Instead of arguing directly about the ball aroundB, we will argue
about the ball of radius 2d around A, since BA(2d) ⊃ BB(d).
More precisely, if we let |BA(d)|α denote the number of α nodes
in the ball of radius d around A, then we want to argue that the
probability that |BA(d)|(α,j) ≤ R and |BA(2d)|α ≥ k is small.
To do this, we have two cases, depending on |BA(d)|. Let lreal
be the number of nodes in the smaller ball around A (or |BA(d)|)
and let l = 8(a/p) log n where p is the probability a node is a
(α, j)-node. (Note that lreal is not a random variable.) Finally, let
k = 16abc log n. (Recall that b is the base of the logarithm and c
is the expansion constant of the network.)

Case 1: lreal > l. Intuitively, this case is unlikely because if the
smaller ball around A has many nodes, we expect there to be
many (α, j) nodes.

More formally, let Xm be the number of (α, j) nodes found
in m trials. Then Xlreal is the random variable representing the
number of (α, j) nodes found in the closest lreal nodes to A.
In this case, we want to bound the probability that Xlreal ≤ R.
Then we can say that Pr[Xlreal ≤ R] ≤ Pr[Xl ≤ R]. Fur-
ther E[Xl] = p(8a/p) log n = 8a log n, so Pr[Xl ≤ R] ≤
Pr[Xl ≤ (1 − 1

2
)E[Xl]]. Using a Chernoff bound, this is

less than exp(− 1
2

2
E[Xl]/2), and substituting, this is less than

exp(− 1
2

2
8a log n/2) ≤ exp(−a log n) = 1/na.

Case 2: lreal ≤ l. In this case, we argue that the ball of radius
2d around A contains more than k nodes with probability less

than 1/na. But since the ball around B of radius d is contained
in this ball, this will imply that the ball around B of radius d
contains more than k nodes with probability less than 1/na.

Let Ym a random variable representing the number of α
nodes in m trials. We wish to bound

Pr[|BA(2d)|α ≥ k],

but this is less than or equal to Pr[Ycl ≥ k], since BA(2d)
contains at most cl nodes. Then

Pr[|BA(2d)|α ≥ k] ≤ Pr[Yclreal ≥ k] ≤ Pr[Ycl ≥ k].

Recalling that E[Ycl] = (pb)c(8a/p) log n, k = 2E[Ycl], so
again using a Chernoff bound, we can write

Pr[Ycl ≥ 2E[Ycl]] ≤ exp(−
8

3
abc log n) ≤ exp(−a log n).

Since the probability of each case is bounded by 1/na, the overall
probability is also bounded by 1/na, completing the proof.

To make sure the probability of failing to get either the new
node’s table or correctly update the tables of established nodes is
less than 1/na for some a, we combine the results in the following
way. Let k1 be large enough that the probability a mistake is made
in building the neighbor table is less than 1/(2na) (this is possi-
ble by Theorem 3), and choose k2 large enough that the probabil-
ity that the algorithm misses an update to another node’s table is
less than 1/(2na) (possible by Theorem 4). Finally, choose k =
max(k1, k2), and the probability that the algorithm of Figure 4
fails to perform the correct updates will be less than 1/(2na) +
1/(2na) ≤ 1/na.

3.3 Running Time
Since each node has an expected constant number of pointers per
level, the expected time of this algorithm is O(k) = O(log n) per
level or O(log2 n) overall. (We are concerned with network traffic
and distance and hence ignore the cost of local computation.)

The number of backpointers is less than O(log n) per level per
node with high probability, so we get a total time of O(log3 n)
with high probability. But this analysis can be tightened. Using the
techniques of Theorems 3 and Theorem 4, one can argue that with
high probability, all the visited level-i nodes are within a ball of
radius 4δi+1. Further, again with high probability, there are only
O(log n) level-i nodes within 4δi+1. This means we visit only
O(log n) nodes per level, or O(log2 n) nodes overall.

Further, notice that δi ≤ 1
3
δi+1. Suppose the number of nodes

touched at each level is bounded by q. We know (by the above) that
q = O(log n). The total network latency is bounded by:

�

i

δiq = q
�

i

δi

Since the δi are geometrically decreasing, they sum toO(d), where
d is the network diameter, so the total latency for building neighbor
tables is O(qd) = O(d log n).

4 Node Insertion
Next, we describe the overall insertion algorithm, using the nearest
neighbor algorithm as a subroutine. We would like the results of the
insertion to be the same as if we had been able to build the network
from static data. This means in addition to correctly updating the
neighbor tables, maintaining the following invariant:

PROPERTY 4. If node A is on the path between a publisher of
object O and the root of object O, then A has a pointer to O.



DRAFT: To appear in Theory of Computing Systems November 2003

In this section, we show that if Property 1, Property 2, and Prop-
erty 4 hold, then we can insert a node such that all three hold af-
ter the insertion, and the new node is part of the network. It may,
however, happen that during a node insertion one or both of the
properties is temporarily untrue. In the case of Property 1, this can
be particularly serious since some objects may become temporarily
unavailable. Section 4.3 shows how the algorithm can be extended
to eliminate this problem.

Figure 7 shows the basic insertion algorithm. First, the new node
contacts its surrogate; that is, the node with the ID closest to its
own. Then it gets a copy of the surrogate’s neighbor table. These
first two steps could be combined, if desired. Next, the node con-
tacts the subset of nodes that must be notified to maintain Prop-
erty 1. These are the nodes that have a hole in their neighbor ta-
ble that the new node should fill. We use the function ACKNOWL-
EDGEDMULTICAST (detailed in Section 4.1) to do this. As a final
step, we build the neighbor tables, as described in Section 3. To re-
duce the number of multicasts, we can use the multicast in step 4
of the insertion algorithm to get the first list of the nearest neigh-
bor algorithm. Finally, notice that once the multicast is finished, the
node is fully functional, though its neighbor table may be far from
optimal.

We would also like to maintain Property 4. This means that all
nodes on the path from an object’s server to the object’s root have a
pointer to that object. Once again, there are two failure cases, one of
correctness, where not fixing the problem means that the network
may fail to locate an object, and one of performance, where not
fixing the problem may increase object location latency.

The function LINKANDXFERROOT from Figure 7 takes care of
correctness by transferring object pointers that should be rooted at
the new node and deleting pointers that should no longer be on the
current node. If we do not move the object pointers, then objects
may become unreachable. Performance optimization involves re-
distributing pointers and will be discussed in Section 4.2.

4.1 Acknowledged Multicast
To contact all nodes with a given prefix we introduce an algorithm
called Acknowledged Multicast, shown in Figure 8. This algorithm
is initiated by the arrival of a multicast message at some node.

A multicast message consists of a prefix α and a function to ap-
ply. To be a valid multicast message, the prefix α must be a prefix
of the receiving node. When a node receives a multicast message
for prefix α, it sends the message to one node with each possi-
ble extension of α; that is, for each j, it sends the message to one
(α, j) node if such a node exists. One of these extensions will be
the node itself, so a node may receive multicast messages from it-
self at potentially many different levels. We know by Property 1
that if an (α, j) node exists, then every α-node knows at least one
such node. Each of these nodes then continues the multicast. When
a node cannot forward the message further, it applies the function.

Because we need to know when the algorithm is finished, we
require each recipient to send an acknowledgment to its parent af-
ter receiving acknowledgments from its children. If a node has no
children, it sends the acknowledgment immediately. When the ini-
tiating node gets an acknowledgment from each of its children, we
know that all nodes with the given prefix have been contacted.

THEOREM 5. When a multicast recipient with prefix α sends
acknowledgment, all the nodes with prefix α have been reached.

PROOF. This is a proof by induction on the length of α. In the
base case, suppose node A receives a multicast message for prefix
α and A is the only node with prefix α. The claim is trivially true.

Now, assume the claim holds for a prefix α of length i. We will
prove it holds for a prefixα of length i−1. Suppose nodeA receives

a multicast for a prefix of length α. Then A forwards the multicast
to one node with each possible one-digit extension of α (i.e., α ◦ j
for all j ∈ [0, b− 1]). Once A receives all those acknowledgments,
all nodes with prefix α have been reached. Since A waits for these
acknowledgments before sending its own, all nodes of prefix α have
been reached when A sends its acknowledgment.

These messages form a tree. If you collapse the messages sent by
a node to itself, the result is in fact a spanning tree. This means that
if there are k nodes reached in the multicast, there are k − 1 edges
in the tree. Alternatively, each node will only receive one multicast
message, so there are no more than O(k) such messages sent. Each
of those links could be the diameter of the network, so the total
cost of a multicast to k nodes is O(dk). Note that there is a variant
of this algorithm that does not require maintaining state at all the
participating nodes, but this is beyond the scope of this paper.

4.2 Redistributing Object Pointers
Recall that objects publish their location by placing pointers to
themselves along the path from the server to the root. From time
to time, we re-establish these pointers in an operation called re-
publish. This section describes a special version of republish that
maintains Property 4. This function is used to rearrange the object
pointers any time the routing mesh changes the expected path to
the root node for some object (e.g., when a node’s primary neigh-
bor is replaced by a closer node). This adjustment is not necessary
for correctness, but does improve performance of object location.

If the node uses an ordinary republish (simply sending the mes-
sage towards the root), it could leave object pointers dangling un-
til the next timeout. For example, if the disappearance of node A
changes the path from an object to its root node so that the path
skips node B, then node B will still be left with a pointer to the
object. Further, the simple republish may do extra work updating
pointers that have not changed.

Instead, a nodes with a new forward route sends the object pointer
up the new path. The new path and the old path will converge at
some node, where a delete message is sent back down the old path,
removing outdated pointers. This requires maintaining a last-hop
pointer for each object pointer. Figure 9 shows the two methods
that are needed to implement this procedure.

Notice, however, that Property 4 is not critical to the function-
ing of the system. If a node should use OPTIMIZEOBJECTPTRS

but does not, then performance may suffer, but objects will still be
available. Further, timeouts and regular republishes will eventually
ensure that the object pointers are on the correct nodes.

4.3 Keeping Objects Available
While a node is inserting itself, object requests that would go to
the new node after insertion may either go to the new node or to
a pre-insertion destination. Figure 10 shows how to keep objects
available during this process: if either node receives a request for
an object it does not have, it forwards the request to the other node.

If an inserting node receives a request for an object it does not
have, it sends the request back out, routing as if it did not know
about itself. That is, if the new node fills a hole at level i, it sends
out a message at level-i to one of the surrogate nodes. The surrogate
then routes the message as it would have if the new node had not
yet entered the network.

If a pre-insertion root receives a request for an object pointer
that has already been moved to the new node, it should forward
the request to the new node. But we want to do this in such a way
that the surrogate does not need to keep state to show which nodes
are inserting. So we require all nodes to “check the routing” of an
object request or publish before rejecting it: the nodes test whether
the object made a surrogate step that it did not need to make. If it
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method INSERT (gatewayIP, NewNodeIP, NewNodeName )
1 (PSurrogateIP, PSurrogateName)← ACQUIREPRIMARYSURROGATE (gatewayIP, NewNodeName)
2 α← GREATESTCOMMONPREFIX(NewNodeName, PSurrogateName)
3 GETPRELIMNEIGHBORTABLE [on PSurrogateIP] ()
4 ACKNOWLEDGEDMULTICAST [on PSurrogateIP] (α, LINKANDXFERROOT[NewNodeIP, NewNodeName])
5 ACQUIRENEIGHBORTABLE (NewNodeName, NewNodeIP, PSurrogateIP, PSurrogateIP)

end INSERT

Figure 7: Node Insertion Routine. The insertion process begins by contacting a gateway node, which is a member of the
Tapestry network. It then transfers object pointers and optimizes the neighbor table.

method ACKNOWLEDGEDMULTICAST(α, FUNCTION)
1 if NOTONLYNODEWITHPREFIX(α)
2 for i = 0 to b− 1
3 neighbor← GETMATCHINGNEIGHBOR(α ◦ i)
4 if neighbor exists
5 S ← ACKNOWLEDGEDMULTICAST [on GETIP(neighbor)] (α ◦ i, FUNCTION )
6 else
7 apply FUNCTION

8 wait S
9 SENDACKNOWLEDGEMENT()

end ACKNOWLEDGEDMULTICAST

Figure 8: Acknowledged Multicast. It runs FUNCTION on all nodes with prefix α.

finds out it did make a surrogate step instead of going to the new
node, the old root node redirects the message to the new node.

To make this work properly, we require that the old root not
delete pointers until the new root has acknowledged receiving them.
If this is done, then one of the two nodes is guaranteed to have the
pointer. No matter which node receives the request, before or after
the transfer of pointers, the node servicing the request either has the
information to satisfy the query or else it forwards the query to the
other node, which can satisfy it using local information.

Finally, it is possible for a request for a non-existent object to
loop until the insertion is complete. We address this problem by in-
cluding information in the message header about where the request
has been, allowing the system to detect and prevent loops. Since
the number of hops is small, this is not an unreasonable overhead.

4.4 Simultaneous Insertion
In a wide-area network, insertions may not happen one at a time. If
two nodes are inserted at once, each may get an older view of the
network, so neither node will see the other. Suppose A and B are
inserted simultaneously. There are three possibilities:

• A’s andB’s insertions do not intersect. This is the most likely
case; A need only know about O(log2 n) nodes with high
probability so the chance that B is one of them is small.

• For some (α, j), B should be one of the (α, j) neighbors of
A, but A has some more distant (α, j) neighbor instead.

• For some (α, j), B is the only possible neighbor.

In the first case nothing needs to be done. In the second case, if
B fails to get added to A’s neighbor table, then the network still
satisfies all object requests, but the stretch may increase. Local op-
timization mitigates this problem. If an exact answer is desired,
we can rerun the neighbor table building algorithm after a random
amount of time.

The third case is a much greater cause for concern, since if A
has a hole where B should be, Property 1 would no longer hold.
This could mean that some objects become unavailable. This prob-
lem could be solved by reinserting the node, but before the reinser-
tion occurs, objects may be unavailable. This is a serious problem,

and this section presents our solution. (Recent work by Liu and
Lam [20] also addresses this problem; their solution has the advan-
tage that it does not requires that non-joining nodes maintain state
about on-going joins.)

We start with a definition:

DEFINITION 1. Assume that we start with a consistent Tapestry
network. A core node is a node that is completely integrated in this
network, that is, it has no holes in its neighbor table that can be
filled by other core nodes in the network, and it cannot fill holes in
the neighbor tables of core nodes in the network.

Together, the core nodes all satisfy Property 1. By this definition,
a node could be a core node without meeting locality Property 2.
The goal of this section is to prove that when a node finishes its
multicast, it becomes a core node, and that all the nodes that were
core nodes before its multicast finishes remain core nodes. We also
add the requirement that any multicast, including those used in in-
sertion, must start at a core node.

Two operations are simultaneous if there is a point in time when
both operations are ongoing. This straight forward definition is im-
portant from a systems standpoint. It is a bit imprecise, however,
since two multicasts could be simultaneous and yet be indistin-
guishable from sequential multicasts without the use of a global
clock. We would like to distinguish between cases where all core
nodes see evidence consistent with a sequential ordering and cases
where there can be no such agreement. To this end, we say that two
multicasts conflict if there are two nodes that receive the multicasts
in different orders. In the following, the hole that a new node fills
is the slot in the surrogate’s neighbor table for which there was no
available core node to perform the multicast operation.

THEOREM 6. Suppose A inserts. When it is done with its mul-
ticast, A’s table has no holes that can be filled by core nodes. Fur-
ther, there are no core nodes with holes that A can fill. These state-
ments are true even when other insertions proceed simultaneously.

This is a proof by induction. We order the nodes by when they
finish their multicasts. By the induction hypothesis, all nodes that
have finished before A satisfy the theorem, and we prove the same
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method OPTIMIZEOBJECTPTRS (sender, changedNode, objPtr, level)
1 oldsender← GETOLDSENDER(objPtr)
2 if oldsender 6= null and oldsender 6= sender
3 OPTIMIZEOBJECTPTRS [on NEXTHOP(objPtr, level)] (self , changedNode, objPtr, level + 1)
4 if oldsender 6= changedNode
5 DELETEPOINTERSBACKWARD [on oldsender] (objPtr, changedNode, level - 1)

end OPTIMIZEOBJECTPTRS

method DELETEPOINTERSBACKWARD (changedNode, objPtr, level)
1 oldsender← GetOldSender(objPtr)
2 DELETE(objPtr)
3 if oldsender 6= changedNode
4 DELETEPOINTERSBACKWARD [on oldsender] (objPtr, changedNode, level - 1)

end DELETEPOINTERSBACKWARD

Figure 9: OptimizeObjectPtrs and its helper function.

method OBJECTNOTFOUND (objectID)
1 if (Inserting)
2 level← LENGTH(GREATESTCOMMONPREFIX(NewNodeName, PSurrogateName))
3 FINDOBJECT [on PSurrogateName] (objectID, level)
4 elseif not ROUTINGCONSISTENTWITHNEIGHBORS(objectID)
5 RETRYROUTING(objectID,Neighbors)
6 endif

end OBJECTNOTFOUND

Figure 10: Misrouting and route correction. Misrouting and route correction are used to keep objects available even during insertion.

is true of A. (Note that we are not assuming that there are no ongo-
ing multicasts whenA starts its multicast.) We start by proving a se-
ries of lemmas. Our first lemma is simple, but important. Lemma 3
states that simultaneously inserting nodes cannot interfere with one
another’s access to core nodes.

LEMMA 3. Nodes in S, the set of core nodes, can be reached
by a given multicast even in the presence of ongoing or completed
insertions of other nodes.

PROOF. Proof by contradiction. Theorem 5 says that all core
nodes can reach one another. Suppose there is a multicast that
misses node X ∈ S. Let B be the node that should have sent the
multicast towards X but did not. Further, suppose that the prefix B
received with the multicast was α. If B did not send the multicast
towards X (that is, send it to (α, j) where α ◦ j is a prefix of X’s
ID), it must have been because it did not have a (α, j) node in its
table. But this is not possible:

Case 1: B has not yet finished its multicast. SinceB is supposed to
send the multicast toX , we know that B and X share prefix α.
Further, since we know thatX was in the network before B be-
gan its multicast,B’s multicast consists of nodes with prefix α.
But this means that B would only have filled (α, j) entries, so
it could not possibly have been contacted with a prefix smaller
than α ◦ j. Contradiction.

Case 2: B has finished its multicast and is a core node. By Theo-
rem 6, since X is an (α, j) node, B must have such a node in
its table. Contradiction.

Although Theorem 6 uses Lemma 3, Case 2 is not circular: Node
B was inserted before the point in time that we use it here.

It remains to deal with the case where two insertions conflict. We
first introduce the notion of a pinned pointer. An (α, j) pointer to
node A stored at node X is pinned when there are nodes whose
multicasts through (α, j) have arrived at X but have not been ac-
knowledged.

When a multicast for a new node filling an (α, j) slot arrives
at some node X , X puts the new node in the table as a pinned
pointer and sends the multicast to one unpinned pointer and all
pinned pointers. When X receives acknowledgments from all re-
cipients, X unlocks the pointer. Finally, X must keep at least one
unpinned pointer and all pinned pointers. If this is done, then X
will reach all (α, j) nodes it knows about without having to store
them all. Intuitively, the unpinned pointer can reach all other un-
pinned pointers so unpinned pointers are all equivalent, while the
pinned pointers are not well-enough connected to be reachable via
multicast.

LEMMA 4. A multicast through an unpinned (α, j) pointer at
node X reaches all other nodes that have or had unpinned (α, j)
pointers at node X .

The proof is similar to other multicast arguments. Ideally, each
multicast will see the other as completed. To enforce this condition,
if any node gets a multicast from A, and notices that the hole for A
is already filled, it contacts all nodes it has seen that fill that hole. As
above, it contacts one unpinned pointer and all the pinned pointers.

Next, we deal with the case when A and B fill the same hole.

LEMMA 5. Suppose A and B fill the same hole. Then with the
modification described above, if A’s multicast conflicts with B’s,
A will get B’s multicast message before B’s multicast is finished.

PROOF. Let X be a node that gets A’s multicast before B’s.
Then when X gets B’s multicast, it forwards it on to A, since they
fill the same hole. Finally, since X does not a send an acknowl-
edgment until A returns an acknowledgment of B’s multicast, A
has been informed by the the time B’s multicast finishes. We then
apply this same argument with the roles of A and B reversed.

We are not yet done. Consider when the α ◦ i hole and the α ◦ j
hole are both being filled by two different nodes (with i 6= j). Then
the α ◦ i node may not get the α ◦ j multicast and vice versa, even
though their multicast sets are the same.
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method ACKNOWLEDGEDMULTICAST(α, FUNCTION, holebeingfilled, watchlist, NewNodeIP)
1 watchlist← CHECKFORNODESANDSEND(watchlist, NewNodeIP)
2 if NOTONLYNODEWITHPREFIX(α)
3 for i = 0 to b− 1
4 neighbor← GETMATCHINGNEIGHBOR(α◦ i)
5 if neighbor exists
6 S ← ACKNOWLEDGEDMULTICAST [on GETIP(neighbor)] ( α ◦ i, FUNCTION, holebeingfilled, watchlist, NewNodeIP )
7 else
8 apply FUNCTION

9 S ← MULTICASTTOFILLEDHOLE(holebeingfilled, FUNCTION, watchlist, NewNodeIP)

10 wait S
11 SENDACKNOWLEDGEMENT()

end ACKNOWLEDGEDMULTICAST

Figure 11: Acknowledged multicast with the watch list. This version of acknowledged multicast handles simultaneous insertions.

method DELETESELF ()
1 for pointer in { backpointers }
2 level = GETLEVEL(pointer)
3 LEAVINGNETWORK [on GETIP(pointer)] (selfID, level, GETNEAREST(pointer, level))

4 for pointer in {neighbors ∪ backpointers }
5 REMOVELINK [on GETIP(pointer)] (selfID)

end DELETESELF

Figure 12: Voluntary Delete. This shows what a node should do when it leaves the network.

So, we further modify the multicast. The starting node sends
down a “watch list” of prefixes for which it knows no matching
node. This can be represented as a bit vector. When the inserting
node sends this to the surrogate, it is a zero for every entry in the
neighbor table. Each receiving node checks the watch list to see if
it can fill in any blank on the list. If it can, it sends the relevant
node to the originator of the multicast, marks the entry as found,
and continues the multicast. From this description, it may sound as
if we are sending a lot of information; in fact, we will be sending
very little, since most of the lower levels of the table will be filled
by the surrogate in the first step, and most of the upper levels of the
table will be zero. In the normal case, we send only a few levels of
the neighbor table, and each level is sixteen bits. This new version
is shown in Figure 11. Using this new multicast, we get Lemma 6.

LEMMA 6. Let A be an α node, and let B be an (α, j) node.
Then if the core α nodes get multicast messages from both A and
B, the (α, j) slot onA will not be a hole. (The core nodes are those
that have finished their multicasts when the latter of A and B start
its multicast.)

PROOF. There are two cases:

Case 1: One α node, X , gets B’s multicast first and then A’s. In
this case, whenA’s multicast arrives onX ,X checksA’s watch
list, and if the watch list has an (α, j) holeB can fill,X has that
hole filled and so will be able to notify A that it too can fill that
hole. If there is no hole in the watch list, then A has already
found such a node.

Case 2: All core α nodes gets A’s multicast first. This means that
A gets the multicast about B.

This completes the proof.

Finally, we put everything together and prove Theorem 6.

PROOF. Consider a node B, and let α be the longest shared
prefix between A and B.

Case 1: If A and B fill different holes on the same level (i.e., A
fills an (α, i) hole and B fills (α, j) hole for i 6= j) , then they
multicast to the same prefix α. By Lemma 3, we know these
nodes are reached, and we can apply Lemma 6, once with A
in the theorem being A of the lemma, and once with A in the
theorem as B in the lemma.

Case 2: If A and B fill different holes on different levels, then
there are core α nodes in the network, and by Lemma 3 we
know these nodes are reached. Given that, we again apply
Lemma 6.

Case 3: IfA and B fill the same hole on the same level, then there
might not be a core node with prefix α so the preceding argu-
ments fail. In this case, we rely on Lemma 5, which says that
if the two multicasts are not serialized, each will find out about
the other before their multicasts complete.

This completes the proof.

Discussion: Note that this parallel insertion algorithm is lock-free;
although the multicast must start from a core node, a core node
can perform multicasts for many inserting nodes. The process of
pinning pointers does not impede forward progress of insertion.

However, a side-effect of this lock-free behavior is that a new
node may receive multicasts from several other inserting nodes.
Fortunately, this effect is uncommon and it is rare that the new node
will be anything other than a leaf in the tree (i.e. the new node will
not forward the multicast). Further, the new node can easily sup-
press duplicate multicast messages.

4.5 Running Time Analysis
The total number of hops isO(log2 n) with high probability.7 Find-
ing the surrogate is no more costly than searching for an object

7Determining k dynamically this cost can be reduced to O(log n) with high
probability [14].
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pointer, and [24] argues that finding an object pointer requiresO(d)
network traffic (and O(log n) hops). Multicast takes time O(kd)
where k is the number of nodes reached. But k will be small in
expectation, and bounded by log n with high probability. Finally,
building the neighbor tables takes O(log2 n) messages. If there are
m objects that should be on the new node, then the cost of repub-
lishing all those objects is at most O(md). This gives a total traffic
of O(md log n) for object pointer relocation.

5 Node Deletion
In this section, we present algorithms that help maintain our invari-
ants when nodes leave the network. We consider two cases: volun-
tary and involuntary delete. A voluntary delete occurs when a node
informs the network that it is about to exit. This is the preferred
mode of deletion that permits the infrastructure to maintain avail-
ability of objects by fixing neighbor links and object pointers. An
involuntary delete occurs when a node ceases to participate in the
network without warning, due to a node failure, a network failure,
or an attack. Note that it is unreasonable to hope that all deletes are
voluntary deletes, and we present an algorithm for this case only
for completeness. In real networks, nodes and links will typically
fail without warning, so involuntary delete is the common case. We
discuss this case in Section 5.2.

5.1 Voluntary Delete
When node A decides to leave the network, it ideally removes it-
self in a way that gives the infrastructure time to adapt its routing
mesh and object pointers to maintain object availability. A begins
by sending its intention to leave the network to all nodes on its
backpointers list (all nodes which currently point to A somewhere
in their routing table). Along with this notification,A sends along a
potential replacement for itself on each routing level. On each such
node (N ), links to A are marked as “leaving.”

Removing the link to A could leave N with an incorrect hole in
its routing table (breaking Property 1). This problem is mitigated
by any existing secondary pointers backing up A and by potential
replacements A sends with its notification. Node N may still wish
to run the nearest-neighbor algorithm to tune the neighbor table.

When this initial notification is received by node N , it repub-
lishes any local object pointers which normally route through A as
if A did not exist. Any incoming queries still route normally to A
while it is marked as “leaving.” Publish operations, however, route
to both A and its replacement. See Figure 12.

After node A sends out its initial notification messages, it ex-
amines local object pointers for which it is the root, and forwards
them on to their respective surrogate nodes. Once all of these ob-
jects have found new root nodes and acknowledgments are received
by A, objects that were rooted atA are now reachable through new
surrogates. Thus availability is guaranteed. Node A then sends out
a final delete notification to its backpointers, telling them to delete
A from their routing tables completely. After all such nodes have
responded, A disconnects. If it is allowable for objects to be tem-
porarily unavailable, much of this work can be skipped, and the
notification can happen in one phase rather than two.

5.2 Involuntary Delete
Involuntary deletion occurs when any failure prevents a node from
performing normal Tapestry operations. For simplicity, we consider
here only complete failures such as network partitions, hardware
failures, or complete system halts. In these scenarios, we would
like the rest of the Tapestry network to detect this node’s failure
and recover as much as possible to maintain object availability and
full reachability of the routing mesh.

We propose that unexpected deletes be handled lazily. That is,
when a node N notices some other node is down, it does every-
thing it can to fix its own state, but does not attempt to dictate state
changes to any other node. In the process of fixing its state, how-
ever, N may hint to other nodes that their state may be out of date.
Deletion can be detected by soft-state beacons [37] or when a node
sends a message to a defunct node and does not get a response.

When node N detects a faulty node, it should first remove the
node from its neighbor table and find a suitable replacement. If this
produces a hole in the table, N will have to find a replacement, to
ensure Property 1 is maintained. Otherwise, N has several options
depending on how good the replacement must be. It can find a re-
placement using a simple local search algorithm; that is, asking its
remaining neighbors for their nearest matching nodes. This is not
guaranteed to give the closest replacement node. Alternatively, the
nearest neighbor algorithm can be repeated. In any case, it should
also use OPTIMIZEOBJECTPOINTERS on all object pointers that
would have gone through the deleted node.

To ensure Property 1, if deleting the node leaves a hole in its
routing table, we must either find a replacement, or determine that
none exists. To do so, we could use a multicast to all nodes sharing
the same prefix of N and the dead node. While this is a workable
solution, the multicast algorithm assumes all tables are complete,
and may not reach a given node if some table along the path is
incomplete. We can do slightly better. Liu and Lam [20] present a
notification algorithm similar to multicast that solves this problem.
Their algorithm has the property that if the node is in the table of
any contacted node, then it will be returned to the node starting the
multicast. Furthermore, their notification algorithm also requires
that only the starting node to maintain state. This makes it ideal for
this application.

One concern is that if a node N disappears, every node that used
to point to N might start such a search, causing more traffic than is
desirable. At the cost of centralization, we can pick one node (say
the surrogate of the departed node) to perform the search, and have
the surrogate return the answer when done.

Unfortunately, this does not maintain object availability. Objects
rooted at the deleted node may become unavailable until a repub-
lish arrives at the node’s surrogate. In fact, a network partition may
result in an inconsistent deletion; we do not address this here.

6 Realistic Deployment
In previous Sections we presented algorithmic solutions for main-
taining Properties 1 and 2 during membership changes to the over-
lay network. These algorithms assume that the network satisfies
the expansion property and that the distances are unchanging. In
this section, we reconsider these assumptions and other issues in
the context of physical networks such as the Internet.

6.1 The Power of Indirection
Tapestry does not replicate data, only references to data. In systems
that do not consider stretch (and consider instead, for example, net-
work hops), one can always add a level of indirection and view
data items as pointers at a cost of only one additional hop; con-
sequently, this distinction may not seem significant. However, the
maintenance of pointers within the network (rather than at appli-
cation level) is a powerful abstraction. Further, adding a level of
indirection can drastically change the stretch properties even when
it does not significantly change the number of network hops.

In addition, an object location system that allows arbitrary ob-
ject placement is extremely flexible. Tapestry enables applications
to choose their own data placement policies, such as placing repli-
cated objects near hotspots or on reliable nodes. Further, it auto-
matically makes use of close resources when possible. This reduces
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network traffic and bandwidth, and may improve reliability as well,
since less links are traversed on an access to a nearby object.

6.2 Physical Network Topologies
One important assumption for this paper is the expansion property
of Equation 1. Most real networks cannot be described this simply.
Several research projects have tried to create accurate models of
the current Internet. One of the more widely accepted models is the
transit-stub network model [34]. Transit-stub networks may or may
not have the expansion property, depending on the layout of nodes
inside the stub. Ideally, we want to provide good performance on
such networks regardless of the intra-stub layout.

The algorithm of Section 3 may not find the nearest neighbor if
the expansion constant of the network is too large. However, a mod-
ification of the algorithm which chooses k dynamically can guar-
antee to always give the right answer, though it may take a long
time when the expansion is high (see [14]). An algorithm without
a strong dependence on the expansion factor seems unlikely, since
high expansion implies high dimension, and high dimension neigh-
bor searches are known to be hard.

Castro, Druschel, Hu and Rowstron [6] explore the question of
the expansion property by running simulations on several different
topology models. Their results suggest that even when the expan-
sion property does not hold, it can be useful in guiding the design
of overlay networks. In the context of this paper, our nearest neigh-
bor algorithm seems to continue to perform well with real network
topologies [35].

6.3 Locality Enhancement
When the expansion property does not hold, the routing stretch may
become quite high. Note, however, that the system will always find
an object afterO(log n) hops, and so in the worst case, it still com-
petes with systems which are not locality-aware. None-the-less, we
can expand the pointer placement mechanisms described in Sec-
tion 2 to enhance the locality and reduce stretch.

For instance, because latency differences between intra-stub paths
and inter-stub paths can be an order of magnitude or greater, we
would like to ensure that an object locate request never leaves the
originating stub if there is a copy of the object somewhere inside
the stub. We propose an optimization for object publication and lo-
cate operations that makes an effort to limit the operation to the
local stub domain.

Assume, for the moment, that Tapestry nodes can detect whether
the next hop is within the same stub network. Then we can en-
sure that a message never leave the stub when the desired object
is inside the stub. When object publication is about to route out of
the local network, it spawns off a “local branch” publish message
which treats the local network as its entire domain. While the orig-
inal routes out to the wide-area, the local publish uses surrogate
routing to route to a local root, where it terminates. If an object ex-
ists in the local network, then the request will terminate at or before
the local object root. Otherwise, it examines the current node’s ID
to determine when surrogate routing started, and resumes at that
hop to continue with normal object location.

For example, suppose the node 1224 is trying to find an object
labeled 1234. If a 123X node exists, but lies outside the local net-
work, node 1224 uses surrogate routing inside the local stub, and
tries to send the message to the closest 124X node in the stub. If
none exists, it sends to the closest 125X node in the stub, and so
on, until it finds a definitive local root node for 1234. If the object
is not found before or at the local stub root, then node 1224 resumes
normal routing outside the stub (to 123X). On the publish side, if a
local node is publishing the object with ID 1234 and discovers the
next hop is outside of the local network, it forwards two publish

messages for the same ID. One continues as a normal publish out-
side of the network, while the other is restricted to the local-area,
and publishes with surrogate routing to a local object root. In prac-
tice, it may not be possible to exactly determine whether a node is
in the same stub or not. However, this can probably be guessed by
setting a local latency threshold and marking nodes further than the
threshold as outside the stub. Details and simulation for this and
other locality-enhancement schemes appear in [31].

The net effect of this optimization is that queries for objects
within a given stub network are always resolved without routing
outside the stub network. The tradeoff is that queries for remote ob-
jects will pay the price of additional surrogate routing hops inside
the stub network; however, these are local hops and surrogate rout-
ing lasts less than 2 hops in expectation [37]. Consequently, sys-
tems should see significant performance gains as a result of elimi-
nating wide-area network traffic.

6.4 Continual Optimization
In the real Internet, routes frequently change due to a variety of
factors, some of which are configuration changes to Border Gate-
way Protocol (BGP), changes in packet forwarding policy between
Internet Service Providers (ISPs) or recalculation of IP routes af-
ter router failures inside Autonomous Systems (ASs). Therefore,
network distance can change over time, potentially thwarting our
efforts to provide locally optimal routes at each hop. In this sec-
tion, we discuss some heuristics to better adapt our network mesh
to the underlying network distance instability. These optimizations
trade computation and network traffic for more up-to-date network
structure.

The simplest thing that we can do is to adjust routing table en-
tries. Recall that for any entry, there are R neighbor links; we pe-
riodically adjust which of these neighbors is the primary. At the
opposite extreme, we can invoke periodic repetitions of the com-
plete nearest neighbor algorithm.

A third option is for a node to record the identities of all the nodes
contacted in its search for a nearest neighbor—at most O(log2 n)
nodes. Then, we can optimize one level or one entry at a time. To
optimize level i, for example, we contact all the level-(i+1) nodes
that were contacted during the original building process, and re-
build level-i. Since this should be an infrequent operation, the ad-
ditional storage can be flushed to disk to minimize memory over-
head. The frequency can be set for a given type of network, or can
be dynamically triggered when nodes discover significant changes
in their expected node to node performance.

A fourth option is to use local sharing of information. That is, pe-
riodically, a node sends to its level-i neighbors a copy of its level-i
neighbor table. The receiving nodes repeat distance measurements
to compare those neighbors with its own, replacing further away
nodes where appropriate. This is the same idea as the heuristic
neighbor table building algorithms in [27, 37].

In all these cases, when a new primary neighbor has been cho-
sen, the node needs to move some object pointers. This can be done
efficiently as described in Section 4.2. Note that such pointer move-
ment can often be deferred until a later time, since it does not affect
the correctness of the object location process.

6.5 Reliable Messaging and Sybil Attacks
Finally, we mention two more significant factors to consider in real
deployment of systems such as Tapestry. First, we reconsider our
assumption that all messages arrive reliably at their destinations in
order. In the Internet, packets can be dropped, connections can be
broken, and communication reliability cannot be guaranteed. This
is exacerbated by the large scale nature of systems like Tapestry.

To provide resilience against unpredictable failures, we use soft-
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state—state that is not needed for correctness. For example, nodes
use periodic heartbeat messages to detect node and link failures,
while objects are republished at regular intervals in order to main-
tain high availability. Soft-state mechanisms limit the loss of avail-
ability due to failures and most attacks, while simplifying our al-
gorithms. The efficacy of these techniques is illustrated in [35]. To
achieve greater resiliency to failure, we can invoke epidemic prop-
agation mechanisms to synchronize groups of pointers among al-
ternate root sets; such techniques are the topic of ongoing research.

In addition to failures, we also need to be aware of malicious
users and potential attacks on the system (Sit and Morris [29] de-
scribe some of these attacks). One particularly devastating attack
occurs when a single attacker impersonating a large number of
physical nodes, in an attempt to gain control over key positions
in the routing mesh. By generating enough randomized node IDs,
an attacker would eventually obtain IDs that position it around an
intended target node in the mesh. Attacks can then be carried out to
deny service or manipulate and spoof communication.

These attacks, referred to as Sybil Attacks [10], are extremely
hard to detect and circumvent. Given enough physical resources,
an attacker can be hard to overcome. One viable solution is to use a
centralized certificate authority to allocate node IDs. Its centralized
nature, however, might lead to problems in scalability. This prob-
lem, like several others related to security, remain unsolved and is
the subject of active research. (See Castro Druschel, Ganesh, and
Rowstron [5] for some approaches to this problem.)

7 Object Location in General Metric Spaces
In this section, we take a slightly different tack and allow an ar-
bitrary metric space S, but do not make the scheme dynamic. We
show how to route to an object with polylogarithmic stretch and
O(|ID| log2 n) average space, where |ID| is the size of an object
ID. We remark that this is the strawman scheme proposed by Plax-
ton, Rajaraman, and Richa [24] without load balancing, and is sim-
ilar to the scheme of Thorup and Zwick [32]. The proof is reminis-
cent of the metric embedding results of Bourgain [4], and Linial,
London, and Rabinovich [19].

Let Si,j be a sample of the metric space such that each node
is chosen with probability 2i/n, and let i ∈ [1, log n] and j ∈
[0, c log n]. Pick a single node at random to be in S0,0. Each node
in the network stores the closest node in Si,j for each pair i, j. Also,
each node in Si,j stores a list of all objects located at nodes which
point to it.

Suppose nodeX wants to find object Y . Starting with i = log n,
X asks (for all j in parallel) its representative in the set Si,j if it
knows of Y . If one of them does, it returns the pointer to Y . If this
fails, it tries Si−1,j for all j. Recall that there is one node in S0,0, so
this will always find the object, if it exists. The following theorem
is key to showing stretch bounds.

THEOREM 7. Let i∗ be the largest i such that there is some
Si,j that points to both X and Y . We will show that d(Si∗,j , X) ≤
d(X,Y ) log n with high probability. Moreover, the average space
used by the data structure is O(log2 n).

PROOF. Let BX (r) be the ball around X of radius r, that is,
all the nodes within distance r of X . Now, consider a sequence of
radii such that rk = kd for k ∈ [1, log n] and d = d(X,Y ). If
|BX(rk) ∩ BY (rk)| ≥

1
2
|BX (r) ∪ BY (rk)| we call rk good. We

now show that if there exists a good rk the theorem holds.
Let r = rk be a good radius. Then consider i such that

2log n−i ≤ |BX (r) ∪ BY (r)| ≤ 2log n−i+1.

When |BX(r) ∩ BY (r)| is 1
2

of |BX(r) ∪ BY (r)|, for a given j,
with constant probability there will be exactly one member of Si,j

in the intersection and no other member in the union. We view each
j as a trial, and since we have c log n trials, with high probability at
least one will succeed. And if there is s ∈ Si,j that points to both
X and Y , when X queries s, X will get a pointer to Y , so i∗ = i.

We now argue that some rk is good. Suppose that
rk is bad. Then |BX (dk) ∩ BY (dk)| is less than half of
|BX (dk) ∪ BY (dk)|. Notice that BX(kd) ∩ BY (kd) contains
|BX ((k − 1)d) ∪ BY ((k − 1)d)|, and since

|BX (kd) ∪ BY (kd)| ≥ 2 |BX(kd) ∩ BY (kd)|

≥ 2 |BX((k − 1)d) ∪ BY ((k − 1)d)| ,

we can say that

|BX(kd) ∪ BY (kd)| ≥ 2 |BX ((k − 1)d) ∪ BY ((k − 1)d)| .

But this can happen at most log n times, since
|BX (r1) ∩ BY (r1)| ≥ 2 (since it contains X and Y ) and
the network has only n nodes.

Finally, if at any point |BX(rk) ∪ BY (rk)| contains the whole
network, then let i∗ = 0, and since there is only one element of
each S0,0, it will clearly be pointed to by X and have a pointer
to Y .

To get the stretch bound, notice that if d(Si∗,j , X) ≤
d(X,Y ) log n, the total distance traveled on level i is
d(X,Y ) log2 n, and the latency (waiting time) is d(X,Y ) log n.
Since there may be log n levels, this means the total latency is
proportional to d(X,Y ) log2 n and the total distance traveled
proportional to c · d(X,Y ) log3 n.

Note that we have assumed implicitly that the distance to the
nearest Si+1,j is always less than the distance to Si,j . This may not
be strictly true. To make it true, we can require that Si,j ⊂ Si+1,j .
Doing this would change the probability of a point being in Si,j
only slightly, so the result still holds.

To provide load balancing, we let i range over all possible ID
prefixes, and only search i’s that are prefixes of Y ’s ID. This re-
sults in a very large table size. We do not know how to efficiently
maintain this data structure.

8 Conclusion
We illustrate how to adapt to arriving and departing nodes in
Tapestry, a location-independent overlay routing infrastructure with
routing locality. We describe an efficient, distributed solution to
the nearest-neighbor problem as well as a distributed algorithm for
maintaining the prefix-based routing mesh. One of the salient prop-
erties of our system is that objects remain available, even as the net-
work changes. Further, the cost of integrating new nodes is similar
to that of systems that do not provide routing locality. The result is
an infrastructure that provides deterministic location, routing local-
ity, and load balance – even in a changing network.
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