
TheOceanStoreArchive: Goals,Structures,andSelf-Repair

ChrisWells
ComputerScienceDivision

Universityof California,Berkeley
cwells@cs.berkeley.edu

Abstract

Theincreasingamountsof digital data,originatingfrom
corporationsand individuals alike, is driving the need
for digital archivesforward. Thiswork discussesa sys-
temdesignedto meetthis need,theOceanStore archive.
This systemstores documentsin a secure manner, and
provideshigh availability and durability. We describe
the structures and algorithms usedin the OceanStore
archive, andpresenta distributedfault detectionandre-
pair schemewhich makes useof OceanStore’s routing
andlocationlayer, Tapestry.

1 Intr oduction

There is a growing demandfor the automatic,online
archiving of digital data.For decades,industryandother
usershave relied on tapeto backup their critical data,
but this schemerequiresa humanadministratorto main-
tainthetapedrives,file servers,andthetapesthemselves.
As theamountof digital datain theworld explodes,this
maintenancewill becometoocostlyto befeasible.Many
differentprojectsarecurrentlyarchiving digital data,in-
cludingdigital libraries[20] andtheInternetArchive[1].
At thesametime, thereareseveralprojectsdedicatedto
distibuting andpreservingdigital datafor long periods
of time, amongthem Intermemory[9], PAST [7], and
OceanStore[11].

OceanStorein particularseeksto maintainits users’
privacy throughend-to-endencryptionwhile simultane-
ouslyguaranteeingtheintegrity of their data.Intermem-
ory andOceanStoreboth useerasurecodesto moreef-
ficiently guaranteethelong-termdurability of their data,
asopposedto the moretraditionaltechniqueof replica-
tion like thatusedin PAST. Thepracticeof distributing
one’sdataacrossthewidearearequirestheuseof a fault
detectionandrepairscheme.OceanStoremustprovide
sucha schemeif it is to meetthechallengeof long term
survivability of its data. This work discussesthe goals
andcurrentstatusof distributeddigital archives. It then

describesthe basicmechanismsand structuresusedin
theOceanStore.Finally, wepresenta fault detectionand
repairschemefor theOceanStorewhich is feasiblegiven
today’savailablehardware.

2 Ar chive Overview

An archiveis any repositoryin which informationis pre-
served. Different typesof archivesexist today for dif-
ferent typesof data. For example,a bank will keepa
vigilant recordof all of its clients’ transactions.For the
pastfew decades,thesetransactionshave beenrecorded
andsaved on magnetictape. More public examplesin-
cludetheLibrary of Congress,whichstores20Terabytes
of informationin the form of text in books,andtheLu-
vre, which storesover 6000paintingsfrom the

��� th to
the

��� th centuries.A moremodernarchive is the Inter-
netArchive[1] , whichcurrentlycontainsapproximately
43 Terabytesof pastandpresentwebpages.

2.1 Ar chival Goals

Thetypeof datastoredin archivesvaries,andthepoten-
tial audiencefor eacharchive differs(a bankshouldnot
revealthetransactionsof anindividual client to thegen-
eralpublic,but theLibrary of Congressis availableto ev-
eryone).While themediaof eacharchive differ aswell,
the underlyingprinciplesof eacharchive are the same.
Everyarchivemustaddressfivebasicarchival goals.

Durability: The durability of an archive’s data is the
mostdistinguishingfeatureof an archive. Archivesex-
ist to preserve data “for the ages”, so a good archive
mustprovide high levelsof durability for its data.Non-
electronicmediasuchas booksand picturesfind high
durability in libraries andmuseumswherethey can be
protectedfrom the elements. Indeed, the Luvrue has
well-preserved paintings which are centuriesold. In
more recent decades,corporationshave turned from
ledgers to magnetic tape for long-term data storage.

1



Thesetapeshave meantime betweenfailuresratedbe-
tween200,000and300,000hours— about30 years [2]
— but eventheseresultsaretheoptimisticresultsof con-
trolled laboratoryconditions. Much greaterdurabilities
canbe achieved throughthe useof redundancy on on-
ling, spinningstorage(seeSection3.2).

Availability: The value of information is proportional
to the data’s availability; if a book listed in the Library
of Congressis currently on loan, it is not available to
the public (and is, for the moment,worthless). Good
archivesmuststrive for high availability of their data.If
dataretrieval is too slow, thedatamaybeeffectively un-
available. In this way, availability is relatedto another
archival goal, performance.Many tapearchives today
useroboticarmsto multiplex throughhundredsor thou-
sandsof tapes,with theentiresetupavailableonline.On-
line availability is highly desirablefor digital archives,
which maycontainenormousamountsof dataandmay
berequiredto servicemillions of users.

Security: Security for an archive has two meanings.
First, if thearchive is a privateone,only authorizedpar-
tiesshouldbeableto view it. A simpleexampleof such
anarchive is a diary. A privateelectronicarchive might
involveaperson’shomevidoes.In adigital archive,end-
to-endencryptioncanbeusedto preserve theprivacy of
documents.Securitycanalsoreferto theintegrity of the
documents.The integrity of a documentis a similar but
strongerrequirementthanits durability. For instance,if
abookin a library werereplacedwith anotherbookwith
thesamecover, but differenttext, thelibrarianin charge
of maintainingthebookwouldnotnotice,but thebook’s
datawouldhavebeenaltered.In adigital, onlinearchive,
theintegrity of datacanbeassuredby cryptographically
tying thedata’scontentto its name.(seeSection3.3).

Usability: If datais notusable,it shouldnotbearchived.
Or, contrapositively, datashouldonly bearchivedaslong
asit is usable.For instance,if notranslationexistedfrom
ancientHebrew into modernlanguages,the DeadSea
scrolls would not have beenof suchprofound interest
when they were unearthed(merely archaelogicalinter-
est). Similarly, electronicmediarecordedtodaymaybe
untranslatabletomorrow — therearefew Betamaxplay-
ersstill in working condition. A moreseriousproblem
facingdigital archivists is the lack of tapedrivesavail-
ableto readdecades-oldtape.Thetapesmayhave been
perfectlypreserved,but becauseno deviceexiststo read
them,they areunusable.Thesetapesaresuffereingfrom
whatis known asthemediaconversionproblem.

Archiveddatais increasinglykeptonline,andin afew

years,it may be periodically migratedto newer media
automatically, thusavoiding themediaconversionprob-
lem [9]. A more subtleproblemis that of preserving
archival semantics: a Microsoft Word documentmay
be perfectlypreserved,but without Microsoft Word (or
anotherappropriateapplication),it cannotbe read. So-
lutions to this problemincludepreservingemulatorsfor
every typeof digital document.

Finally, if a document’s privacy is protectedso that
only a limited numberof peoplecanview it, transferof
viewing rightsis necessaryto preventthedocumentfrom
becomingunusable.This transferis relatively simplein
thecaseof physicalarchiveslikebooks.If adocumentis
electronic,andis cryptographicallyprotected,the trans-
fer is a little morecomplicated.The documentis only
usableso long asits readkey survives. If an individual
wishesto passon his readkey to his inheritors,a secure
mechanismmustexist for the transferof the key which
will not leak informationaboutthe key to otherparties.
Onesimplemechanismfor anindividual who wishedto
passon his key would be to encryptit usinghis inheri-
tors’ keys,andplacetheresultsin thecareof his estate’s
executor, but thisschemerelieson thetrustworthinessof
theexecutor.

Performance: As mentionedearlier, performanceis
strongly relatedto availability. The more quickly data
canbe retrieved from or depositedinto an archive, the
more valuablethe archive becomes. An excellent ex-
ample of improving the performanceof an archive is
a library’s card catalog. This single index reducesthe
time to find a bookfrom hours(or perhapsevendays)to
mereminutes.In theelectronicworld, indicesareubiqui-
tous. Searchandretrieval timesarethereforedependent
on themedia’s seektime andbandwidth.For magnetica
tapes,the readandwrite bandwidthsareashigh as15
Megabytesper second [6], but the seektime on tapes
can be quite high (750 MB/s for a 25 Gigabytetape,
meaning,on average,a seektime of 33 seconds).Ide-
ally, a digital archive shouldhave instantaneousaccess.
More practically, a digital archive’s performanceshould
becomparablewith thatof a local harddisk.

2.2 HardwareTrends

Designingarchivesfor tomorrow requiresa carefullook
at today’s hardwaretrends,andhow they will affect to-
morrow’s capabilities.Thetrendsin moderncomputing
arerelatedto Moore’s Law, in thatmostdigital technol-
ogy is currently improving exponentially. Thesetrends
cannotcontinueforever, but they canpersistfor thenext
twentyyears.Threegeneralmetricsin particularareof

2



interest,andwe will seewhatthesemetricslook like to-
dayandwhatthey will bein twentyyears.

Capacity Thecapacityof storagedeviceshasbeengrow-
ing with Moore’s Law. In particular, disk capacityis
growing ataphenomenalrate,doublingevery18months
to today’s capacyity of roughly 100 Gigabytes. This
trendhaskeptwhat is essentiallyonetechnology(mag-
netic platters)at the forefront of secondarystoragefor
decades,andit showsnosignof abating.Indeed,dataon
conventionalharddiskscanbecomemoredense,andin
twentyyearsthe100-foldincreaseperdecadein density
will yield diskscapableof storingonepetabyte.If this
trendcontinuedfor fifty years,a singleharddisk could
storeone Zettabyte,or one billion trillion bytes. This
numbercomesperilously close to violating the maxi-
mumdensityavailablewereweableto controlindividual
atoms,so the exponentialincreasein disk capacitywill
likely endbeforethen.Still, evenapetabyteof storageis
immense.

While thecapacityof tapeshasbeenkeepingpacewith
that of disks, the cost-capacityof tapeshasnot. In the
past,thecostof abyteof diskwasroughlytentimesthat
of a byte on tape. Today, however, this ratio hasbeen
reducedfrom tento three[10]. In termsof capacity, then,
tapesarebecomeslessattractiverelative to disks.

Bandwidth Thetransferrateof availablehardwareis of
critical importancewhendesigningan archival system.
As previouslymentioned,today’stapesystemscantrans-
fer15Mb/s. Diskshavearoughlyequivalenttransferrate
(25Mb/s). Liketheircapacity, harddisk’stransferrateis
growing exponentially. The rateof growth, however, is
muchsmallerthantherateof growth for capacity— dou-
bling onceevery threeyears. The capacity/ bandwidth
ratioof harddisksincreasestentimesperdecade[10].

An interestingobservationmadein [3] is thatnetwork
bandwidthis beginning to outstrip disk bandwidth. In
fact,Gigabitethernetis onthehorizon.Moore’sLaw for
network bandwidthstatesthat link bandwidthwill dou-
ble every18 months.Thedeploymentof links, however,
is outpacingthis prediction.G. Gilder predictedin 1995
that deployed network bandwidthwill triple every year
for the next twenty-five years[8] . According to [10],
today’s fiber optics have a bandwidthof 40 Gbps. In
another20 years,thesesinglelinks couldbeaslargeas
400 Tbps. By the samefactor, today’s 100Mbpsether-
net could be replacedin 20 yearswith Tbps lines. By
comparison,disk bandwidthwill be only 2.5 Gbps. It
wouldseem,then,thatanidealarchivewouldstripedata
over a largenumberof disksto reducethecostof reads,
allowing the archive’s bandwidthto approachnetwork

today 20years
CPU 1 GHz 10THz
diskcapacity 100GB 1 PB
diskbandwidth 25Mbps 2.5Gbps
network bandwidth 100Mbps 1 Tbps

Figure1: Summaryof hardwarecapabilitiestodayand
20 yearsin thefuture.

bandwidth.

Finally, someformsof archival encodingmayrequire
computationswhich exceedthoserequiredfor I/O oper-
ations.CPUspeedsmaythereforebecritical in termsof
anarchive’seffectivebandwidth.Moore’sLaw for CPU
speedsstatesthat CPU speedsdoubleevery 18 months.
Today’sCPUsarerunningat 1 GHz,soin twentyyears,
we couldseea processorcapableof 10 THz, or 10,000
timesfasterthantoday’sprocessors.

Latency Latenciesareimprovingatamuchmoremodest
pacethanarebandwidths.Indeed,network latenciesare
alreadysignificantfractionsof thespeedof light. A sin-
glemessagecrossingtheUnitedStatestodaytakes30ms,
andbarringa revolution in physics,it will take 30msfor
the restof humankind’s existence. Disk seekandrota-
tion timeswill fair slightly better, improving at a rateof
approximately8Today, onehalf a rotationtakesroughly
3ms,andseektimesareabout6ms. This givesus a la-
tency of 9ms for a randomseek. In twenty years,this
numberwill bereducedto 1.7ms.Currenttrendsin soft-
wareto offset thedisparitybetweenseektimesof disks
and disk bandwidthand capacityinclude queueing(so
that accessesareprioritized basedon their physicallo-
cationson the disk ratherthan the order in which they
arrived)andcachingmoredatain anever-growing main
memory.

Summary Theproblemswith disk seektime andband-
width canbemitigatedby observingthatmorediskscan
always be addedto the network. A single machine’s
bandwidthto the Internetwill likely be that of a single
link. Further, the CPU power availableto a singlema-
chinewill be within a small constantfactorof the CPU
power of a uniprocessor. Thesetwo trends,then— net-
work bandwidthandCPU power — will determinethe
availablebandwidthto any distributedarchive. The la-
tency of a wide-areaarchive will, without caching,nec-
essarilybeontheorderof tensof millisecondsdueto the
speedof light. The capabilitiesof hardwarewe expect
now andin twentyyearsaresummarizedin Figure2.2

3



Figure2: Thedataobjectstructure.

3 Ar chive Data Structures

An archiveis a linearsequenceof versions, whichin turn
are linear sequencesof bytes. For example,a file may
beconsideredanarchive,andits contentsat a particular
day andtime areoneversionof that file. A distributed
archive suchas that in OceanStorerequiresthat every
objectstoredbe locatedby a globally uniqueidentifier
(GUID). It alsorequiresthat thereexist two basictypes
of GUIDs: a versionGUID (V-GUID) namesa specific
versionof anarchive;anarchiveGUID (A-GUID) is the
nameof anarchive,andit canbeusedto requestfrom the
archival systemthemostrecentV-GUID of thatarchive.

This section describesthe data structuresused in
OceanStoreto storeandrepresentthe datacontainedin
thearchival system.We first describethebasicdataob-
jectstructure,andthenmoveon to describehow wesup-
plementthat structureto provide strongdurability and
integrity guaranteesaswell astight bindingto GUIDs.

3.1 VersionRepresentation

An archival system— especiallyadistributedarchive—
may containversionsso large that a typical client can-
not cachethemin theirentirety. An archival systemmay
alsopossessarchiveswhich have small updatesapplied
to them regularly. To addressboth of thesefeatures,
OceanStoreusestheDataObjectstructureshown in the
dashedbox in Figure2.

A version of an archive is an array of bytes.
As in many filesystemsand virtual memory systems,
OceanStorebreaksa version’s array of bytes up into
uniform-lengthblocks. The blocks form the leaves of
a B-tree,which is shown in the dashedbox. A block’s
parentin the treemustcontainlocationandverification
information for that block. In OceanStore,the parent
block storesits childrenblock’s GUIDs, which aresuf-
ficient for both locationandverification. In this way, a
client canrequestandverify a blockaslongasit hasthe
block’s parent.Notethata client cancacheasfew or as
many blocksasneeded;the entireB-treedoesnot have
to bestoredasa singleunit.

As mentionedin Section3.3, the GUID of a block is
the root hashin a hierarchicalverificationtreeover the
block’s dataand its fragments. The GUID of the top
block is calculatedin exactly the samemanneras the
GUIDs of otherblocks,but it is usedastheV-GUID for
the data. A userof OceanStorecan requestany piece
of datain the B-treegiven its V-GUID andan offset in
the data. The top block is alsouniquein that it hasap-
pendedto it metadatafor the archive andversion,and
thesetwo entities— B-treeinformationandobjectmeta-
data— areencodedanddisseminatedasasingleblockof
information.Themetadatacancontaininformationsuch
asowneridentification,accesscontrol,andtheV-GUIDs
of pastversions.It canalsobeusedby applicationwrit-
ersto solve thearchival semanticsproblemby including
in themetadatatheGUID of anappropriateemulatorfor

4



thatobject.
A client modifying a data object can use copy-on-

write to prevent having to rearchive all of the old ver-
sion’s data. A client canchangea singledatablock in
the version,which will result in the block hashingto a
new block GUID. This new GUID mustbestoredin the
block’s parent,so the parentblock will changeaswell,
producinganew GUID. Thechangeis propagatedupthe
B-tree,sothatchanginga singledatablockwill resultin
a numberof blocksequalto the heightof the treeto be
changed,andthusrequireredissemination.To alleviate
thestorageoverheadinherentin thisscheme,OceanStore
alsomakesuseof loggingbetweenversions.

3.2 A Casefor Erasure Codes

Section 3.1 reducedour storageinterface to that of
a block store. To store versionsof archives in the
OceanStore,wethereforeneedonly storein adistributed
anddurablemannerthe blocks of thoseversions. The
mostcommonmethodsusedto achieve high durability
of dataarecompletereplicationandparityschemessuch
asRAID [15]. Theformer imposesextremelyhigh stor-
ageoverhead(sizein storageis severalfactorslargerthan
original data),while the latter doesnot provide the ro-
bustnessnecessaryto survive the high rate of failures
expectedin the wide area. Erasurecodesare a super-
setof theseclassicmechanismswhichprovideextremely
high durability andavailability without imposinganun-
reasonableoverheadin storagespace.

Usingerasurecodes,a usercanbreakup a block into� fragmentsandrecodetheminto � � fragments,where��� �
. Suchencodingincreasesthesizeof thedataby a

factorof � . We referto
�
	 � astherateof encoding.The

key strengthof erasurecodesis that the original block
can be reconstructedfrom any � fragments. Figure 2
illustratesthefragmentsof block d1.

Thereare a numberof erasurecodeswith different
performancecharacteristics. Some, such as Tornado
Codes [13], scale linearly with the number of frag-
ments. Tornadocodesin particularcan reconstructan
objectvery quickly, but do so only with high probabil-
ity and only in the presenceof slightly more than one
half (for rateone-half)of the fragments.Theseproper-
ties make TornadoCodesappropriateonly when large
numbers(hundredsto thousands)of fragmentsare be-
ing produced.The “ReedSolomon”[17] family of era-
sure codesare popular, but have encodingtime scal-
ing quadratically, making them practicalonly for rela-
tively small objects. Becausewe encodesmall blocks
in OceanStore,we chosean effiecient versionof Reed
SolomoncalledCauchyReedSolomoncodes.

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60

N
um

be
r 

of
 fa

ile
d 

di
sk

s 
pe

r 
m

ill
io

n 
di

sk
s

�

Age in months

Failure distribution of hard disks

Measured
Calculated

Figure3: Disk failuredistribution

3.2.1 Availability

Erasurecodingexploits thestatisticalstability of a large
numberof independentcomponents. The availability
of an object increaseswith the numberof fragments
andrateof encoding. As the fraction of the fragments
neededto reconstructan objectdecreases,the probabil-
ity of reachingenoughfragmentsfor reconstructionin-
creases.Similarly, as the numberof fragmentsfor an
objectgrows, the probability thatnot enoughfragments
areavailablefor reconstructiondueto network partitions
and machinefailuresdecreases.The availability of an
objectcanbesummarizedasfollows:��


probabilitythatanobjectis available��� maximumsafenumberof unavailablefragments�
totalnumberof fragments� totalnumberof machinesin theworld� numberof currentlyunavailablemachines

��
������� � ���
�! �#" �!$&%' � % �("� $ � " (1)

This formulastatesthat theprobability thata block is
availableis equalto thenumberof waysin whichwecan
arrangeunavailable fragmentson unreachableservers,
multiplied by the numberof ways in which we canar-
rangeavailablefragmentson reachableservers,divided
by thetotal numberof waysin which we canarrangeall
of thefragmentson all of theservers.

For instance,with a million machines,ten percentof
which arecurrentlydown, simply storingtwo complete
replicasprovidesonly two nines( )+* �#� ) of availability. A�
	#,

-rateerasurecodingof adocumentinto 16fragments
givestheblock overfiveninesof availability( )+* �#�(�#�#�#- ),
yet consumesthe sameamountof storage. With 32
fragments,the availability increasesby anotherfactor

5



0 0.5 1 1.5 2 2.5 3 3.5 4
Repair Epoch

(months) 0
10

20
30

40
50

60
70

Number of
fragments
(rate = 2)

1
1e+10
1e+20
1e+30
1e+40
1e+50
1e+60

MTTF (years)

Figure4: MeanTime to Failureof aBlock

of 4000,supportingthe assertionthat fragmentationin-
creasesavailability. This is a consequenceof thelaw of
largenumbers.

3.2.2 Durability

An analysisof the MTTF of fragmentsandfragmented
blocksis alsoessentialin motivating the useof erasure
codes.Disk failuredistributionsobtainedfrom [16] and
shown in Figure 3 indicatethat while diskshave some
infantmortality, ahighnumberof themsurvivethedura-
tion of their servicelife of five years.Usingthesenum-
bers,we determinedthat theageof a randomlyselected
diskwasuniformlydistributedfromzerotosixty months.
Thisallowsustocalculatetheexpectedlifetimeof afrag-
mentafterdissemination,andultimatelyto calculatethe
meantime to failure of an entireblock. We acceptthe
simplifying assumptionthatall fragmentswould fail in-
dependently, no serversbehavemaliciously, andthat the
repairmechanismwould(if theobjectwasstill alive),pe-
riodically reconstructandre-disseminateeveryfragment.
Our parametersincludethe rateof encoding(

�
	#,
), the

numberof fragments(varyingfrom
-

to . - in increments
of
-
), andthe lengthof the repairepoch(varying from�
	/-
monthsto

-
monthsin incrementsof

�
	/-
month).

Figure 4 shows the resultsof our calculations.The
scaleof theMTTF axisis exponential,indicatingthatthe
MTTF of objectsscalessuper-linearly with the inverse
of the repair epoch. A more exciting result is that the
MTTF of objectsscalesexponentiallywith the number
of fragments.With twelvefragmentsandarepairtimeof
two weeks,we seethat an objecthasan MTTF of over
onehundredbillion years.

3.2.3 A Mole of Bytes

Humanitycurrentlygeneratesanestimated
� * 0 exabytes

of dataperyear. An archival systemshouldbedurableon
theorderof

� )()#) years,soa capacityof over
� )(132 bytes

is desirable.Thisnumberis closeto onemole( .54 � )(176 )
of bytes. The mechanismsdescribedin the preceeding
sections,combinedwith theincreasingcapacityof disks
andnetworks,make it possiblefor the first time to pos-
tulate the storageandmaintenanceof a mole of bytes.
Put anotherway, what arethe resourcesneededto pre-
vent the lossof a singlebyte in a moleof bytesfor one
thousandyears?Assumingthatencodedobjectsfail in-
dependently, theanalysisperformedfor a singleobject’s
MTTF canbeextendedto any number, 8 , of objectssim-
ply by taking the 839;: root of the desiredprobability of
failure(in ourcase,*<0 ).

Using the repair schemedescribedin Section3.2.2,
with sixty-four total fragments,a rate

�
	/-
erasurecode,

anda repairepochof ten months,a moleof bytes(bro-
ken up into

-
kB blocks, can be expectedto fail after

twenty-seventhousandyears.Therepairmechanismfor
a mole of bytesrequiresthat onebillion billion bits be
transferredper second.If we assumethat thereare ten
billion machinesin the world, the bandwidthrequired
per machineis thereforeonehundredMbs. This num-
ber is within oneorderof magnitudeof today’s network
capacity, indicatingthata wide-areaarchival systemcan
successfullyscaleto serviceonemole of bytes. Scala-
bility becomeseven more feasiblewhenmoreefficient
repairschemesareused— schemeswhich only transfer
fragmentswhich requirereconstitution.Additionally, as
network bandwidthgrowswith Moore’sLaw, increasing
numbersof byteswill becomemaintainable.

3.3 Naming and Integrity

Now thatwe have a distributed,durableblock store,we
needa mechanismby which to nameand locate indi-
vidual archives,versions,andblocks. As statedin Sec-
tion 3.1,a version’s V-GUID is merelytheblock GUID
of its B-tree’s topmostblock. Thus,only two basictypes
of GUIDsneedbeproduced.ThisSectiondescribeshow
blockGUIDsandarchiveGUIDsarecreatedandverified
in thearchival system.

3.4 Naming and Verifying Blocks

Erasurecoding requires the precise identification of
failed or maliciouslycorruptedfragments. As a result,
the systemneedsto detectwhen a fragmenthasbeen
corruptedand throw it away. We thereforeintroducea
secureverificationschemefor fragments.

6



H1 H2 H3 H4

Fragments

H12 H34

H14

GUID

Block

Hd

(a)

frag data H1 Hd

frag data H2 Hd

Fragment 2: H34

Fragment 1: H34

(b)

Figure5: The block GUID is the root hashin a binary
verificationtreeof hashesoverthefragmentsanddataof
a block

For eachencodedblock, we createa verificationtree
over its fragments. Figure 5(a) is a binary verification
tree. Theschemeworksasfollows: We producea hash
over eachfragment,concatenatethecorrespondinghash
with a sibling hashto producea higher level hash,and
continuethealgorithmuntil thereis a topmosthash.We
thenstorewith eachfragmentall of thesibling hashesto
thetopmosthash,a total of log � hashes,where � is the
numberof fragments.Figure 5(b)shows thecontentsof
a “disseminationfragment”. Thehashat the root of the
treeis theGUID of theblock. To ensurethatotherdata
doesnothashto thesameGUID, weusetheSHA-1 [14]
securehash.

Onreceiving a fragmentfor recoalescing,aclient ver-
ifies it by hashingover the dataof the fragment,con-
catenatingthat hashwith the sibling hashstoredin the
fragment,hashingover the concatenation,andcontinu-
ing this algorithm until thereis a topmosthash. If the
final hashmatchestheGUID for theblock,thenthefrag-
menthasbeenverified; otherwise,the fragmentis cor-
rupt andshouldbediscarded.

A GUID shouldnot only verify a fragment.A block
shouldbeverifiableagainstits GUID independentof its
fragments.A simpleextensionto theaboveschemesuf-
fices.Oncetheroothashfor thefragmentsof ablockhas
beencalculated,it canbeconcatenatedwith ahashof the
block’s unencodeddata,andthehashof this concatena-
tion will thenbetheblock’sandfragments’GUID. Each
fragmentwill storeoneadditionalhash(thehashoverthe
block’sdata),but theblock— coupledwith therootfrag-
menthash— will beverifiableagainsttheblock GUID.

3.5 Naming and Verifying Ar chives

While eachversionof anarchivepossessesa GUID, the
entirearchivemustalsohavea GUID (throughwhich its

RP GUIDRP Public Key

(PR Private Key)RP public keyεPR Public Key

Version GUID

Signature

Signature

Signature

Owner’s Public Key Name

Secure Hash

Archive GUID

Figure6: A tombstoneis a securemappingfrom an A-
GUID to a V-GUID. The V-GUID is signedby the pri-
maryring’skey, which in turn is signedby theresponsi-
ble party’s key. Theresponsibleparty’s key is signedby
theowner’skey, which is verifiableby asecurehashthat
producestheA-GUID.

most recentversionor pastversionscanbe requested).
Theremustexist a securemappingin the archival sys-
tem from the archive’s A-GUID to the V-GUID of its
most recentversion. This mappingcanexist in oneof
two forms in OceanStore.The archive mayhave an ac-
tive primaryring, which is a setof serversusingByzan-
tine Agreementprotocolsto maintaintheA-GUID to V-
GUID mapping1. If noprimaryring exists,themapping
is storedin tombstones, so namedbecausethe primary
ring putsthemin placein theeventof its death.

A tombstonefor a particulararchive is namedandlo-
catedby thatarchive’sA-GUID, andit containsthepub-
lic key of thearchive’s owner, theGUID andpublic key
of the archive’s responsibleparty, the public key of the
archive’s lastprimaryring, thehuman-readablenameof
thearchive, andthe latestV-GUID of the object. These
itemsarearrangedasshown in Figure3.5, so that each
of themis verifiableagainsttheA-GUID. Thus,a tomb-
stoneis completelyverifiableby its archive’sGUID: one
needsimply hashover theconcatenationof theowner’s
public key and the archive’s human-readablenameto
verify the owner’s public key againstthe A-GUID, use
the owner’s public key to verify the responsibleparty’s
public key, usetheresponsibleparty’spublic key to ver-
ify theprimaryring’spublickey, andthenusethispublic
key to verify the tombstone’s signatureof the V-GUID.
When a primary ring producesnew tombstonesfor an
archive, it routesthemto the storageserverscontaining
theold tombstonesfor thatarchive. Theseserversverify
thenew tombstonesandthenoverwritetheir oldercoun-

1Primaryor ByzantineRingsarediscussedin moredetail in [11]

7



Storage
Servers

Primary

Serializer

Ring

Clients

Figure7: TheOceanStore,asanarchival system,is com-
posedof clients,serializers,andstorageservers.Writing
clientsmustcommunicatewith theserializer, but reading
clientscancommunicateeitherwith theserializeror with
thestorageserversdirectly. In OceanStore,theprimary
ring servesastheserializer.

terparts.In thisway, theA-GUID to V-GUID mappingis
madedurablethroughreplication. By replicatingtomb-
stones,we alsoenablethemto be repairedin the same
wayasfragments(discussedlater).

In thepresenceof a responsibleparty, theuseris able
to senda requestto the archival systemfor a file even
if no primary ring is currentlyactive. The requestwill
beroutedto thetombstonesfor theobject,which in turn
aresentto the responsibleparty. The responsibleparty
spawns a new primary ring which begins servicingre-
quests.

4 Interfaces

The archival layerof OceanStorehasbeendescribedas
ablockstoragesystem.With theadditionof tombstones,
it alsomuststoremappingsfrom A-GUIDs to V-GUIDs.
This secondtype of storageis more complicatedthan
merelystoringread-onlyblocks,becauseit requiresthe
archival systemto synchronizeandserializeversionsof
an archive so that the entiresystemconsidersthe same
distinctV-GUID asthemostrecentV-GUID for a given
A-GUID. Thearchival systemthereforerequiresa seri-
alizer for eacharchive which acceptsupdatesfrom au-
thorizedclients,appliesthemin a sequentialorder, and
recallstheV-GUID of themostrecentlycreatedversion.
Figure 4 depicts the relationshipsamong OceanStore
client machines,the serializer, andOceanStorestorage
servers.

Thissectiondescribestheinterfacewhich thearchival
layer must implement. This interfaceis usedboth by
clients communicatingwith the primary ring and the
storageserversandby the primary ring itself. We also
describetheinterfacewhicheachstorageservermustim-
plement.

4.1 Ar chival Layer Interface

Thearchival layerof OceanStoreis in chargeof encod-
ing anddisseminatingindividual blocksof objects,and
storingthemappingsfrom objectGUIDs to mostrecent
versionGUIDs. The interfacefor thesemechanismsis
straightforward:

disseminate(block) = GUID

The disseminateoperationtakes a block, erasureen-
codesit, disseminatesthe resulting fragments,and re-
turnstheGUID generatedfor theblock from theblocks
dataand fragments. This routine is calledby the soft-
warelayer immediatelyabove the archival layer, which
handlesplacingtheGUIDs of new childrenin their par-
entblocks,andthencallingdisseminate() for those
parrents.

retrieve(block GUID) = block, frag-

ment hash

When a client desiresa block which is stored in the
archive,it callstheretrieve() routine,whichlocates
theblock’s fragmentswith its GUID, retrievesthem,and
reconstructstheblock. It returnstheblock’sdataaswell
as the top-mosthashin the fragments’verification tree
(recall that this hash,concatenatedwith the hashof the
block’sdata,will hashto theblock’sGUID).

disseminateTombstone(object GUID, ver-

sion GUID, owner key, primrary ring

key certificate, primary ring key)

When a primary ring (or any other authorizedclient)
wishesto generatea new objectGUID - versionGUID
mapping,it calls this routine to createthe tombstones
anddisseminatethem,replacingany tombstoneswhich
currentlyexist for theobject.

retrieveTombstone(object GUID) = ver-

sion GUID

Thisroutinewill retrieveanobject’stombstonesandwill
returntheversionGUID they indicateasthemostrecent
versionGUID.

8



4.2 StorageServer Interface

Theitemswhichthearchivemustdisseminate,store,and
retrieve are thus erasure-encodedfragmentsand tomb-
stones.Thetwo importantqualitiessharedby thesetwo
types of data is that both are self-verifiable, and both
aredurableagainstfailureby makinguseof redundancy.
Eachcanberepresentedasasequenceof bytes,whichin
turn canbestoredby any moderncomputer. For the re-
mainderof thissection,“fragment”will referto any item
which canbestoredby thearchival storageservers.The
interfaceof astorageserver in theOceanStorearchive is
asstraightforwardastheinterfacefor thearchive:

store(GUID, fragment, certificate) =
success or failure

Whena server is askedto storea fragment,it placesthe
fragmentonpermanentstoragesothatit canberetrieved
usingits GUID. If the fragmentis alreadyon theserver,
store returnsfailure.Thecertificatecontainsinforma-
tion pertainingto the owner’s identity andbilling infor-
mation. It shouldsecurelyidentify the party requesting
storagefor thefragment.

contains(GUID) = success or failure

A servercanquerywhetheror not it hasa fragment.

retrieve(GUID) = fragment or failure

A server indexes its storagemedium using the input
GUID, andit returnsthefragmentnamedby thatGUID,
or failureif thefragmentcouldnot befound.

delete(GUID, certificate) = success

or failure

A server may also be requestedto remove a fragment.
The fragmentis locatedby its GUID, andtheserver re-
turnseithersuccessor failure. Note that the requesting
partymustincludea certificateenablinghim to perform
thedeletion.Sucha certificatecouldsimply bea nonce
signedby theowneror responsiblepartykey.

With this simple interface,many possibleimplemen-
tationscan exist. A naive implementationstoreseach
fragmentin aseparatefile, andnamesthefilesaccording
to the fragments’GUIDs. All operationsof the storage
server are thus reducedto file systemoperations.This
implementationignoresa critical featureof the datain
the OceanStorearchive: fragmentsand tombstonesare
small. For example,a 4K block erasure-encodedinto 32
fragmentswith a rate 1/2 codewill producefragments
of size 404 bytes. This numberincludesthe fragment
data,the fragment’s verification information,andaddi-
tionaloverheadsuchasthefragment’sGUID andits type

andrateof encoding.Thetotal sizeof a fragmentis cal-
culatedasfollows:

fragmentdatasize
� - ) � .� . bytes

messagefragment� , 0#. bytes
messagefragment

(2)

hashoverhead
� , ) bytes

hash
4>0 �� )#) bytes

fragment
(3)

additionaloverhead
� ,@?

bytes (4)

total fragmentsize
� , 0@.�A � )#)�A ,@? � - )#) bytes (5)

Tombstoneare even smaller at approximately200
bytesa piece. Thesesmall sizesarenot well supported
in ournaivescheme,becauseeachfragmentwill take up
anentireblock on disk (4K). A moreintelligentscheme
assignsmultiple fragmentsto asinglefile, andmaintains
a mappingfrom GUIDs to storagefiles. Other imple-
mentationsare possible,including databases.Because
disseminationof fragmentswill berandom,thereshould
be no correlationbetweenfragmentson a single node.
Additionally, the fragmentsfor a block should not be
accessedoften, sincewe expect OceanStoreto intelli-
gently cacheactive documents.Thesefactsseemto in-
dicatethat thereis no goodway avoid going to disk on
every fragmentretrieval. Recall from Section2.2 that
disk bandwidthtodayis approximately25 Mbps,andin
twentyyearswill be2.5Gbps.Thenumberof fragments
storedon a device will thereforebe determinednot by
thedevice’scapacity, but by thebandwidthdemandedof
thearchiveby its users.

5 Tapestry

Fragmentsstoredin theOceanStorearchival layerareal-
lowed to resideon any server. This propertygives the
archival systemthe ability to spreadfragmentsfor an
objectacrossthe world (increasingthe object’s durabil-
ity), andit makesthe taskof removing old serversfrom
and addingnew servers to the OceanStoremuch sim-
pler. To route to fragmentswith this propertyrequires
a sophisticatedrouting and location layer. OceanStore
thereforemakesuseof Tapestry[22], anoverlaynetwork
basedon thehashed-suffix routingstructureby Plaxton,
et. al. [18].

Recallthatall fragmentsfor a givenblock arenamed
by the sameGUID. EachGUID mapsdeterministically
to a singlenodein Tapestrywhosenodeidentifier most
closelymatchestheGUID. Thisnodeis referredto asthe

9



49F4

39F4

B2F461F4

5D14

33C4

80AB

19F4

C2F4

B024

4B32E5F4

7CF4

DC62

491F

Root

Fragment

Client
Fragment

Fragment

Figure8: A single location treein Tapestry. The three
fragmentspublish themselves to their block’s root by
sendingmessagesto nodeswhoseid suffixesareincreas-
ingly similar to thatof theblockGUID. A client request-
ing thefragmentsroutesits requestto theroot,asshown
by thethick line initiating at theClient.

object’s root node.Whena fragmentis storedon a stor-
ageserver, it advertisesitself throughTapestryby rout-
ing amessageto this rootnode.At eachhopin Tapestry,
thismessagedepositsapointercontainingthefragment’s
GUID andtheGUID of thenodestoringit. As advertise-
ment messagesfor different fragmentsconverge to the
root, intermediatenodescontainincreasingnumbersof
pointersfor theobject’sGUID. Figure5 illustratesthree
fragmentsfor a block locatedin a Tapestrytree,anda
clientsendingarequestfor thethreefragments.Theroot,
onreceiving theclient’srequest,will forwardtherequest
to the threenodescontainingthe fragments(which are
themselvesthe rootsof their own GUIDs’ trees). Each
of thesestoragenodeswill thensendtheir fragmentto
theclient,which is alsotherootof its own GUID’s tree.

Figure5 summarizesthenumberof nodesperhopand
numberof fragmentspernodefor Tapestrygivena net-
work with

� )#B nodes,a branchingfactor of 16, and a
singleobjectwith 32 fragments.As the tableindicates,
therewill beonly 8 hopsbetweenafragmentandits root,
but to retrieve 16 fragments,a requestmusttraverseall
thewayto anobject’sroot. Becausetheroot is socritical
to locationin thearchive,multiple locationtreesareused
for eachobject. Additional detailsof multiple locations
treesandroutingin Tapestrycanbefoundin [22].

6 Fault Detectionand Repair

This section will survey the different types of repair
availableto theOceanStoresystem.Thesetypesof repair

hop pointerspernode nodesperhop
1 1 6.25e+7
2 1 3.91e+6
3 1 244000
4 1 15300
5 1.013 954
6 1.282 59.6
7 10.67 3.73
8 32 0.233

Figure9: Thenumberof expectednodesateachhopin a
Tapestrylocationtree,andthenumberof expectedpoint-
erspernodeat eachhop,givena network of

� ) B nodes,
a branchingfactorof 16 in Tapestry, andanobjectwith
32 fragments.

includethe local repairof fragmentsby their own stor-
ageservers,Tapestry’sdetectionof serverfailure,andthe
distributedfault detectionandrepairof individual frag-
ments.We closethesectionwith ananalysisof simula-
tionsrun againstourdistributedfragmentfault detection
andrepairscheme.

6.1 Local Repair

One problemin secondaryand tertiary storagestudied
todayis that of mediafailure. Tapecanrot, andblocks
cango badon disks. Error correctingcodesandother
forms of redundancy are often used to prevent these
kinds of failuresfrom damagingthe bits that arebeing
stored. OceanStorearchival storageservershave avail-
ableto themredundancy so long asthey areconnected
to the wide area. A server can slowly sweepthrough
thedatait stores,usingits fragments’cryptographically
self-verifyingnatureaschecksumsto ensurethatthedata
hasbeenpreservedcorrectly. If anerror is detected,the
server — asa client of theOceanStore— needonly re-
questthe failed fragment’s block from the archive, re-
constructthe block, andthenfragmentit to recreatethe
lost fragment. We do not expect storagemediato fail
frequently, so this sweepcanbe doneover a fairly long
periodof time. In twentyyears,accordingto Figure2.2,
a disk will storeonePetabyteof dataandhave a band-
width of 2.5Gbps.Using all of the disk’s bandwidth,a
sweepcanbecompletedin no fewer than37 days. This
numberis unacceptable.As mentionedin Section2.2,
the amountof dataon a disk will be determinedby the
disk’s bandwidth,andnot its capacity. By replacinga 1
PB diskwith 10010 TB disks,thelocal sweepperiodof
37dayscanbemaintained,but will useonly onepercent
of thedisks’ bandwidth.

10



server fragment MAC key
component heartbeat heartbeat update
fragmentGUID 0 20 0
serverGUID 20 20 20
timestamp 8 8 8
signature 20 20 20
publickey 0 0 128
Total 48 68 176

Figure10: Breakdown of Tapestrypointerheartbeatcon-
tentsandMAC updates.All sizesareexpressedin bytes.

6.2 Tapestry Pointer Repair

Beforewe discussthe repairof fragments,we mustad-
dressthe self-repairof the Tapestry. The pointers in
Tapestrymustbekeptup to date,andmustbekeptcon-
sistent(thoughbrief periodsof incosistency aretolerable
dueto Tapestry’s fault-tolerantnature).For theanalysis
of this section,we will assumea network with .�4 � ) B
users,onemachineperuser, and

� ) GB of dataperuser.
Data is broken up into

-
KB blocks, eachof which are

encodedinto
�C,

fragments.

6.2.1 Default Tapestry Pointer Update

Themechanismfor Tapestryself-repairendorsedin [22]
is a fragmentheartbeat.We extendthat schemein this
work to preventmalicioususersfrom issuingheartbeats
for serversthatthey donotown. Securitycanbeattained
by includingwith eachheartbeata MAC of its contents
andtheMAC key. Thisschemerequiresthateachserver
storea MAC key for eachother server with whom it
communicates. The size of a MAC key is

, ) bytes,
andthe numberof MAC keys which mustbe storedon
eachTapestrynodeis atmostthenumberof pointersper
Tapestrynode; this implies a storageoverheadof less
than 0#)CD . If a machinereceivesa heartbeatfor which
it hasno MAC, it caneasilyrequesttheMAC key from
the sender. The MAC updatemessagefrom the sender
includesthe senders’s public key, which canbe verified
becauseaTapestrynode’sGUID is ahashoverits public
key. We assumethat requestsfor MAC keys occurvery
infrequentlyrelative to thenumberof messagessent.

The contentsof a fragmentheartbeatareenumerated
in Figure10. Onceaday, anobjectresidingonaTapestry
nodewill issuea heartbeatup eachof its locationtrees.
ThisheartbeatincludestheGUID of theobjectaswell as
theGUID of theserver. In thisway, thelocationinforma-
tion in Tapestryis preserved throughsoft-state.For the
OceanStorearchive, however, this schemeis infeasible.
Considerthetotalnumberof fragmentsin ourexample:

.E4 � ) B people 4 � )F4 � ) ,@- 6 bytes
person4 �- ) � . block

bytes
4 �C, fragments

block� 0+* ) �#� 4 � ) 2HG fragments (6)

With onenodeperpersonin theworld, therewill be

0+* ) �#� 4 � ) 2HG.E4 � ) B � ? * �(� 4 � ) G fragments
node

(7)

Now considerthat each node will also serve as a
tapestryroot for fragments. By symmetry, this means
that eachnodewill store,as a root node,

?(� * � million
pointers.But Tapestryusesredundantlocationtrees(let
usassumefive), so thereareactuallyfive rootsfor each
fragment.Our network sizewill produceTapestryloca-
tion treesof height8, andeachnodewill serve at differ-
entheightsin differentlocationtrees— aparticularnode
will appearasoftentwo hopsaway from fragmentsasit
will eighthopsaway. Soweendup with

? * �(� 4 � ) G fragments
node

4>0 trees
fragmentnode4 ? pointernodes

tree
� � * � .I4 � ) B pointers

node
(8)

Eachpointeris 40byteslarge(20bytesof SHA1hash
for the objectGUID and20 bytesfor the storagenode
GUID). Thus,eachserver stores— andmusthave pe-
riodically updated—

���@-
GB in pointers. With MAC

keys, this numberincreasesto
, ) � GB. 2 In the default

Tapestryscheme,eachof thepointersresidingon a ma-
chinewill berefresheddaily. This will resultin

? * �(� 4 � ) G 4 �
day? .+J - )() seconds

� �&K&� fragments
second

(9)

and

� * � .F4 � ) B 4 �
day? .LJ - )#) seconds

� �#? J � )() pointers
second

(10)

being processedby eachnode. The bandwidthre-
quiredby eachnodeis therefore

2This numberis actually larger than the M7N OQPQPSRUT;OHVXWY RUT;OQZ []\S^_^a`b�c b_d [feH^ T;O bytesstoredon eachnodefor fragments.This particu-
lar result is expected,sinceto provide high durability andavailability
of distributedinformation,we mustnecessarilyuseredundancy of in-
formation.

11



�#? J � )#) heartbeats
second

4>0 -#- bits
heartbeat

� ,+� * , Mbps (11)

of bandwidth. If we assume100Mbpslinks to each
nodein thesystem(optimistic,but not unreasonable,for
today), then this is twenty percentof the availablenet-
work bandwidth.The requiredCPU time is determined
by thespeedof theMACs. EachMAC canbeprodcued
andverified by hashingover the messagecontents,and
thenhashingovertheconcatenationof thathashwith the
MAC key. Thus,two hashesareused.Thespeedof the
SHA-1 hashwasmeasuredin [19] as * ) � . mson a

, .(.
MHz machine.If we extraploateto a

�
GHz speed,this

numberbecomes* )#) -C, . ms.Thus,a MAC takes * )() ? 0 ,
msto produceandto verify. Using this number, the re-
quiredCPUtime in this schemefor cryptographyis

g � * ?#� 4 � )#h MAC
nodesecond

A �CKU� MAC
secondi4j* )#) ? 0 , ms

MAC� �#- ) ms
second

(12)

This numberis over
� )CD of the availableCPU time.

We candevelopamoreefficientupdatescheme.

6.2.2 Server HeartBeats

Wecansignificantlyimproveuponthedefaultschemeby
only updatingserverroutingtables.In theTapestry, each
nodehasaneighbortableof size 8'4lknm#o&p+q . With 8 � � .
and q � , 2Hr � , this is . - ) neighborspernode.If aserver
periodically republishesitself to eachof its neighboars
onceanhour, thetotal bandwidthrequiredwill be

. - ) heartbeats
nodeminute

4 �(?@- bits
heartbeat

4 �
minute.() seconds� - * ) � . Kbps (13)

andthetotal requiredCPUtimewill be

g * )#) ? 0 , ms
MAC minute

A
. - ) nodes

node
4s* )() ? 0 , ms

MAC minutei4 � �]tu��v'wyx.#) seconds� * ) �+� ) ms
second

(14)

For secureserverheartbeatsoccuringonceperminute,
then,our total resourceusagefor network bandwidthis- * ) � . Kbps

	&� )#) Mbps
� * )#) - D and our total resource

useof CPUtime is * )() � D .

6.2.3 Notification HeartBeats

When a given node goesdown, there are . - ) nodes
which will quickly notice.Othernodeswhich arepoint-
ing to critical dataon thatnodecanleveragetheseother
nodesfor notification. Critical datamay includeactive
objects(primary ringsor cachedcopies),or fragmented
objectsfor which thereareonly a few fragmentsleft (so
the objects’ roots want to know as quickly as possible
whenanotherfragmentis lost). A simulationsimilar to
thatdiscussedin Section ?? revealedthatusinga repair
schemeon

�C,
one-halfratefragmentswith heartbeatsoc-

curring oncea month, and with repair occuringeither
immediatelyafter the lossof

?
fragments,or oneweek

afterthelossof
-

fragments,thatthetotalnumberof lost
fragmentswasonly lessthan

?
lessthan

� D of thetime.
Thus,theproportionof objectsin thearchive which are
critical (underthisscheme)is

�
in
� )#) .

We thereforeproposethat, for critical objects, root
nodesin Tapestryrequestnotification.If ServerA wishes
to be notifiedwhenanobjecton Server B is lost dueto
server failure,it canregisterwith anumberof B’sneigh-
bors(let’s say 0 ). This is donedeterministicallyin the
following manner:

1. A sendsa notification requestto Server B. It can
repeatthis requestseveral times,andif B doesnot
senda response,A knows thatB is alreadydown.

2. B usesA’sserverGUID asaseedto arandomnum-
bergeneratorwhichproducesfive randomnumbers
between

�
and . - ) . Thefirst randomnumberdeter-

minesto which neighborout of B’s . - ) neighbors
thenotificationrequestmessageis sent.

3. B routesA’s notification requestto eachselected
neighbor.

4. Whenthenotificationrequestis receivedby Server
C, it storesA’s GUID alongwith B’s GUID asan
interestedparty

If Server B fails, Server C will detectthis failure be-
causeit will not have received B’s server heartbeats.It
will thensenda messageto ServerA informing it of B’s
failure.

Thisschemeissuesaheartbeatcontainingtwo GUIDs
(onefor theserver to bewatched,andonefor theserver
to benotified). Thesearethesamesizeastheheartbeats
in Section6.2.1. Only oneout of every forty fragments
will requireoneof theseheartbeats(which areactually
issuedfrom the Tapestryroots),but five of theseheart-
beatswill occurperfragment.Heartbeatstravel from the
server wantingnotificationto the server to be watched,

12



a trip which on averageshouldtake
-

hops(half thedis-
tanceup the locationtreeuntil a pointerto the watched
nodeis found). Oneadditionalhop is thenrequiredto
routethenotificationmessageto a neighbornode.

If welet notificationheartbeatsoccuronceperday, the
bandwidthrequiredis�� )() 4 ? * �(� 4 � ) G fragments

nodeday
4 5 rootnodes

fragment4 g - hops
rootnode

Az0 notifiers
rootnode

4 �
hop

notifier i4{0 -#- bits
hop

4 �
day? .+J - )#) seconds

�� ,@�(?
Kbpspernode (15)

TheCPUis usedto MAC anotificationheartbeat,and
to verify thatheartbeatfive times.Thenumberof notifi-
cationheartbeatswhich mustbe sentout by an average
nodepersecondis then

�� )#) 4 ? * �(� 4 � ) G fragments
nodeday

4g � MAC� �
|(}&��x���w A~0 notifiers
node

4 � MAC
notifier i4j* )#) ? 0 , ms

MAC
4 �

day? .+J - )() seconds� * -(� . ms
second

(16)

The resourceuseof this schemefor network band-
width andfor CPUis therefore* ,/- D and * )C0@)CD , respec-
tively.

6.3 Distrib uted Repair for Fragments

We have seenthat serversarecapableof repairingtheir
own fragments,andwe have seenthat, for critical doc-
uments,Tapestrycanusea combinationof server heart-
beatsand notification to quickly detectadditional fail-
ures. Eachof theseschemes,while beneficial,is insuf-
ficient towardmaintaininga distributedobjectfor a long
periodof time. The OceanStorearchive requiresa dis-
tributedfragmentrepair scheme.

There are four basic types of distributed repair
schemesfor fragments:

Untrusted passive detection A fragment periodically
sendsa heartbeat(seeSection6.2 for details)to an
untrustedparty or partiesin the network. If one
of thesepartiesdoesnot receive a heartbeataftera
numberof heartbeatperiods,it marksthefragment
asinactive.

Untrusted activedetection An untrustedparty in the
infrastructure can also periodically sweep frag-
ment(s) by requestingthem from their storage
server(s). When it receives a fragment,it checks
its integrity. If a server fails to senda correctfrag-
mentafteranumberof sweepperiods,theuntrusted
partymarksthefragmentasinactive.

Trusted passive detection Fragmentsperiodicallysend
heartbeatsto a party in the network whom object
owners entrustwith the integrity (though not the
contents)of their data. Again, after a numberof
missedheartbeats,this partymarksthefragmentas
inactive.

Trusted activedetection Thetrustedpartyperiodically
requestsall of thefragmentsandverifiesthem. If a
fragmentfails to appearafter a numberof sweeps,
thepartymarksit asinactive.

In thiscategorization,trust refersto whetheror not the
partyin questionwill behavecorrectly

� )#)CD of thetime.
Untrustedpartiesmayundergo Byzantinefailures.Pas-
siverefersto fault detectingalgorithmsin which thede-
tectingpartynoticesa fault only whena fragmentstops
advertisingitself. Finally, activerefersto the detecting
party verifying that a storageserver not only claims to
haveafragment,but thatit canactuallyproducethefrag-
mentcorrectlyupon request. Notice that eachform of
detectionreliesonanumberof failuresto occurbeforea
fault is declared.This numberis tunable,andin thecase
whereit is setto one,thedetectingpartycanmaintainno
fault detectionstatebetweenepochs.

OceanStorehasthe notion of a responsibleparty, an
entity that is trustedwith the integrity of its clients’
data.Thispartycanperformpassivedetectionandactive
sweepsof its clients’ fragments.Many responsiblepar-
ties may exist in the OceanStore,thoughtherewill cer-
tainly be far lessof themthanusersor storageservers.
Becauseit is centralized,we wish to limit the amount
of work performedby andstatestoredat the responsi-
bleparty. While thedesignandnatureof theresponsible
party arebeyond the scopeof this paper, we discussa
possiblesolutionto its scalabilityproblemin Section8.

OceanStorealsoassumesa network that is composed
almostentirelyof untrusted,onlineserversthatcanper-
form fault detection.In particular, theTapestrynodesin
the location treesfor a fragmentedobjectalreadyhave
pointersto the object’s fragments,so they are ideally
suitedfor thetaskof fault detection.Tapestryoffersan-
other benefit for fault detection,in that it provides for
locality of detection;nodeswhich arelow in anobject’s
location tree are very closeto its fragmentsrelative to
nodeswhich are high in the tree. Theseservers can

13



thereforeperformfaultdetectionmoreoftenthanservers
which arefartherup the tree. We still want nodesvery
high in the tree to do fault detectionoccassionally, be-
causein this mannerwe caninsulatethesystemagainst
regionaloutages.A nodein theTapestryperformsheart-
beat checksand sweepsin periodswhich grow expo-
nentially with the node’s distancefrom the fragment(s)
whichit is testing.Usinganexponentiationfactorof

� *<0 ,
if anodeonehopawayexpectsaheartbeatonceamonth,
anodetwo hopsawaywouldexpectaheartbeatevery

� *<0
months,anodethreehopsawaywouldexpectaheartbeat
every

, * , 0 months,andtheroot (
?

hopsaway)wouldex-
pecta heartbeatevery

�/K * ) � months. Of course,nodes
low in the location treesprogagatedetectedfailuresup
thetreesto theroots,andreportedfaultsareeasyto ver-
ify — a nodecanrequesta fragmentwhich hasbeende-
claredfaulty 3. In this manner, Tapestryrootsbecome
clearinghousesfor fault information. Becausethereare
fiveroots,this information— while notperfectlyconsis-
tent amongthe roots— is highly reliableby meansof
replication.

Finally, thequestionof repairmustbeanswered:when
too many faultshave beendetected,who recreatesand
redisseminatesthefragments?In thefaceof billing (dis-
cussedin Section8),only theresponsiblepartycanrecre-
atefragmentsandredisseminatethemin a secureman-
ner.

Withoutbilling, anyonecansuccessfullyrecreatefrag-
ments.In particular, theTapestryrootsarein a position
to know whenreconstructionis necessary. Synchroniza-
tion amongtherootsis simple. Whena root determines
thatis will performrepair, it sendsamessageto theother
rootsinformingthemthatit will repairthelostfragments.
It thenwaitsonehourfor aresponsefrom eachotherroot
informing it thatthatotherroot will not performaparal-
lel repair(which couldproducetoo many fragments).In
theeventthat two or morerootssendthesemessagessi-
multaneously, the lowestordered4 root’s messagewill
behonored.After a responsehasbeenreceivedfrom all
of the other roots,or after onehour of having sentthe
message,the root performsthe repair. The other roots
wait onedayafterhaving receivedtherepairnotification
message.If, after this time, no new fragmentsaread-
vertisedto them,thenext-highestroot modulothenum-
berof rootswill performrepair. Therootscycle through

3Whena nodehasreportedmany falsefaults,it maybemalicious.
A reputationschemecanaid in detecting,reporting,andcorrectingfor
ill-behavednodes.Theimplementationof suchaschemeis beyondthe
scopeof thispaper.

4In Tapestry, multiple rootsareassignedto asingleobjectby hash-
ing over thatobject’s GUID anda small integer, in our casee - � . The
“lowesterordered”root is thereforetheroot thatwasreachedusingthe
smallestinteger.

therepsonsibilityfor repairin thismanneruntil thefrag-
mentsareregenerated.By this mechanism,exactly one
root will performthe repair (unlessall of the rootsare
corrupt,an unlikely event unlesswe areoperatingin a
domaindominatedby maliciousservers).

In the following Sections,we argue in favor of the
above scheme.Fragmentssendheartbeatswith a period
of
�

monthup onehopalongtheir trees,andsendaddi-
tional heartbeatsfurther up the treewith periodsexpo-
nentially smallerthan

�
month(with exponentialfactor

of
� * 0 ). Additionally, Tapestrynodesperform sweeps

every
,

monthsat hopone,with higherhopsperforming
sweepsexponentiallylessoften(again,with exponential
factorof

� *<0 ).
6.3.1 Analysis of Distrib uted Repair

We mustensurethat theschemesproposedin theprevi-
oussectionwill not overly tax our network andCPUre-
sources.We expecttheresponsiblepartyto performless
work in repairthantheTapestrynodes,andweareunsure
of its implementation.Wethereforefocusouranalysison
theloadon theTapestrynodes.

First,weanalyzetheheartbeatscheme.To useour im-
provedsignaturescheme,eachpointerin Tapestrymust
storethe top hashof the hierarchicalhashof the next 0
signatures,soour storageoverheadincreasesby another
hash— 0@)CD overhead.If weassumeanexponentialfac-
tor of

� *<0 in our heartbeatscheme,the total numberof
heartbeatssentby eachnodepersecondis

? * �#� 4 � ) G fragments
node

4 5 heartbeats
fragmentmonth

4 � month� ) days
4 �

day? .LJ - )#) seconds
4��� � � 2

�� * 0
� % 2 �- . K heartbeatssent
second

(17)

andthetotalnumberreceivedby eachnodepersecond
is

? * �#� 4 � ) G fragments
node

4 5 heartbeats
fragmentmonth

4 � month� ) days
4 �

day? .LJ - )#) seconds
4��� � � 2 t �� � �

� �� *<0 � % 2 �� )(. � heartbeatsreceived
second

(18)

Thesetwo numbersindicate that the requiredband-
width pernodeis- . K A � )#. � heartbeats

second
4 � 0#. ? bits

heartbeat
� 0+* 0 - Mbps (19)

14



andtherequiredCPUtime isg - . K sentheartbeats
second

4�A � )(. � receivedheartbeats
second i4 MAC

heartbeat
4s* )() ? 0 , ms

MACs� � )L* � ms
second

(20)

The analysisof sweepsis similar. We analysea
schemein whichsweepshappenonly onehalf asoftenas
heartbeatchecks.MACsarestill usedto verify fragment
requestsandtheoriginsof fragments,sothata nodebe-
tweena storageserver anda sweepingnodecannotpro-
vide a fragmentto the sweeper(thuspreventingit from
detectinga fault).

Eachserver will thereforerequest,andby symmetry,
serve

? * �(� 4 � ) G fragments
nodeperiod

4�0 trees
fragment4 �

period,
months

4 �
moonth� ) days

4 �
day? .LJ - )#) seconds

4��� � � 2
�� * 0
� % 2 � fragmentrequest

tree� ,#,#� fragmentrequests
nodesecond

(21)

andeachserverwill handleon average

? * �(� 4 � ) G fragments
nodeperiod

4�0 trees
fragment4 �

period,
months

4 �
moonth� ) days

4 �
day? .LJ - )#) seconds

4 �� � � 2 t �� � �
� �� * 0
� % 2 fragmentrequest

tree� � 0 �(, fragmentrequests
nodesecond

(22)

A server handlesany requestwhich it issuesor that
movesthroughit. The above formulationassumesthat
thenumberof hopsfrom a pointerto thenodeto which
it pointsis thesameasthenumberof hopsfrom thenode
to the pointer. By symmetry, eachserver will have to
handle

� 0 �C, fragmentsper second. Both requestsand
fragmentsmustbesupplementedwith

?
bytesof times-

tampand
, ) bytesof MAC. Thus, the total bandwidth

requiredby eachserver for this schemeis

g � 0 �(, fragmentrequests
nodesecond

4�. ? bytes
fragmentrequest

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

M
ea

n 
T

im
e 

to
 F

ai
lu

re
 (

ye
ar

s)

Number of fragments

Figure11: Meantime to failurefor differentnumbersof
fragments.

A � 0 �(, fragments
nodesecond

4 -&,@? bytes
fragmenti4 ? bits

byte
� .L* ) ? Mbpspernode (23)

EachCPUmustproduceor verify four MACsfor each
fragment(two for therequest,andtwo for thefragment),
and must verify eachfragmentit receives on a sweep
( 0 hashes).The CPU time requiredfor cryptographyis
therefore

g ,#,#� fragmentrequests
nodesecond

4 , MACs
fragmentrequest

A,#,#� fragmentsserved
nodesecond

4 , MACs
fragmentsservedi4j* )() ? 0 , ms

MACs
A ,#,#� fragmentsserved

nodesecond4 5 hashes
fragmentsserved

4s* )() -&, . ms
hash� ��, * K ms

second
(24)

This schemeis fairly inexpensive, in that it requires
only

�#� * .CD of theavailablebandwidthand
- * ,#? D of the

availableCPUtime.

6.3.2 Measurementsof Distrib uted Repair

We simulateda global Tapestrywith onebillion nodes
in orderto measuretheeffectivenessof our scheme.We
only simulateda singleerasure-encodedobject,because
erasureencodedobjectsin theOceanStorewill fail inde-
pendentlyof oneanother. Wealsoonly simulatedthedis-
tributedrepairscheme– andnot server heartbeatscou-
pled with notification— becausethe simulationwould

15



9

10

11

12

13

14

15

16

0.5 0.6 0.7 0.8 0.9 1

M
ea

n 
nu

m
be

r 
of

 a
va

ila
bl

e 
fr

ag
m

en
ts

�

Trust Factor

Figure12: Numberof availablefragmentsfor different
trustfactors.

not run to completionwith notification (the meantime
to failure would be too great). Each simulation used
the responsibleparty to coordinaterepair, meaningthat
Tapestryroots informed the repsonsibleparty of frag-
mentlosses.We includedmaliciouspartiesin our simu-
lation: a maliciousstorageserver advertisesa fragment,
but doesnot storeit; a maliciousTapestrynodedoesnot
sweepanddoesnot performheartbeatchecks,but does
propagatefalseheartbeatsup to its root — preventing
any nodesbetweenit andtheroot from passively detect-
ing a failure. Our simulationreportedtwo basicmetrics
for our scheme,namelymeantime to failureandtheav-
eragenumberof available(surviving) fragments.Each
meantime to failure hadan equivalentstandarddevia-
tion of time to failure, a resultexpectedbecauseof the
memorylessnatureof lossyfragmentsandrepair.

Unlessotherwisestated,eachsimulationhadthe fol-
lowing parameters:

� . fragmentswith rate21 encoding;0
redundantTapestrylocationtrees;a Tapestrytreeheight
of
?
; a Tapestryheartbeatperiod of one month and a

sweepperiodof onemonth(with exponentiationfactors
of
� * 0 ); a responsibleheartbeatperiodof

,
monthsand

a sweepperiod of
-

months;a failure trigger of
�

for
heartbeatchecksandsweeps(afragmentisdeclareddead
only after

�
consecutive failures);anda repairthreshold

suchthat only after ceiling-one-quarterof the threshold
numberof fragmentshadbeenlostwouldtheresponsible
partyreconstruct.

6.3.3 Numbersof fragments

First, we measuredtheMTTF againstdifferentnumbers
of fragments.Figure11showstheresultsonalog graph.
TheMTTF growsexponentiallywith thenumberof frag-
ments,but dips after

?
and

� . fragments.This dip oc-
cursbecauseafterevery

?
fragments,thenumberof frag-

10

100

1000

10000

100000

0.5 0.6 0.7 0.8 0.9 1

M
ea

n 
T

im
e 

to
 F

ai
lu

re
 (

ye
ar

s)

Trust Factor

Figure13: Meantimeto failurefor differenttrustfactors.

ment losseswhich must be detectedbefore repair oc-
curs increases.In the simulationwith

?
fragments,the

responsibleparty would only repairafter one fragment
losshadbeendetected,but with

� ) fragments,it would
wait until two losseshadbeendetected.If weextraploate
this graphwith this trend,anotherdip occursat

,/-
frag-

ments,and the meantime to failure at
�C,

fragmentsis
approximately

� )#G years.Themeannumberof available
fragmentsin eachsimulationwasconsistently

� * K 4 the
thresholdnumberof fragments,with very low standard
deviations.

6.3.4 Trust

An importantfactor in our distributedrepair schemeis
that of trust. If we do not trust the infrastructureat all,
we cannotrely on it to performfault detection. If, on
the other hand,we trust the infrastructurecompletely,
we can rely on it aloneto perform fault detection. In-
creasingtrustincreasestheaveragenumberof fragments
whichareavailableataparticularinstantin timeandde-
creasesthe variability in the numberof available frag-
ments,asshown in Figure12. Themeantime to failure
increasesexponentiallywith increasingtrust factors,as
summarizedin Figure13. Thisresultis interestingin that
it indicatesthat Tapestryfault detectiondominatesthe
fault detectionof theresponsibleparty. Figure14 shows
thepercentageof faultsdetectedby eachhopin Tapestry
andby theResponsibleParty. Theimportantresulthere
is thatevenfor very low levelsof trust, theResponsible
Party detectslessthanonepercentof all faults. This re-
sult is duein part to the reducedfrequency of heartbeat
checksandsweepsperformedby the responsibleparty,
andin part to the fact thateachTapestryhop is actually
fivenodes(to theresponsibleparty’ssinglenode).

Figure14alsoindicatesthatthevastmajorityof faults

16



0.0001

0.001

0.01

0.1

1

10

100

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
er

ce
nt

 o
f f

ai
lu

re
s 

de
te

ct
ed

�

Trust Factor

RP
Hop 1
Hop 2
Hop 3
Hop 4
Hop 5
Hop 6
Hop 7
Root

Figure14: Percentageof faultsdetectedby theRespon-
siblePartyandby differenthopsin Tapestry, asfunctions
of thetrustfactor.

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6

P
er

ce
nt

 o
f f

ai
lu

re
s 

de
te

ct
ed

�

Tapestry Hop

ratio = rp/tapestry
ratio = tapestry/rp

Figure15: Percentageof faultsdetectedby theRespon-
sible Party versusthe ratio betweenits detectionperiod
andthedetectionperiodof Tapestry

were detectedby Tapestrynodesat hop
�
. We expect

this result,andit is a powerful argumentin favor of our
localizationof repair. Thatotherhopsin Tapestrymust
performperiodicfault detectionstemsfrom thethreatof
regionaloutages,which we did not includein our simu-
lations.

6.3.5 Repair Frequency

We further analyzethe role of the responsibleparty in
fault detection. We ran the simulationwith sweepsal-
waysoccurringonly half asoftenasheartbeats,andwe
variedheartbeatchecksfor first-hopTapestrynodesand
the ResponsibleParty from

�
month to . monthsin

�
month increments. Figure 15 shows the percentageof
the faultsdetectedby the responsibleparty versushow
often it performedsweepsandheartbeatchecksrelative

to the frequency of Tapestryfault detections. The top
line of points is plotted againstthe RP frequency over
the Tapestryfrequency, andthe bottomline of pointsis
plottedagainsttheinverseof this ratio. Theresultsindi-
catethatunlesstheresponsiblepartyperformsheartbeat
checksandsweepsmoreoftenthanTapestrynodes,it is
not helpful in fault detection.It is reasonableto assume
that therewill be fewer than one responsibleparty for
every fifty Tapestrynodes.Recallingfrom Section6.3.1
that the resourceutilization of Tapestrynodesfor dis-
tributedrepairis

� )CD , it seemsunlikely thatwecanmake
theresponsiblepartyperformfault detectionfasterthan
Tapestrynodes.Therefore,theresponsibleparty should
not takepart in fault detection.

7 RelatedWork

Work in digital archives is not new. Since the incep-
tion of computing,programmersandadministratorshave
beenseekingbetterwaysto preserve datafor long peri-
odsof time. This Sectionpresentsa few of theprojects
mostinfluential in today’sdigital archiveresearch.

7.1 RAID

Oneof thefirst effortstowardsmakingdatamoredurable
without changingthemediaon which it wasstoredwas
RAID [16] . The mostcommonlyusedform of RAID
is Level 5, in which blocksof dataacrossseveral disks
shareablockof parity information,andparityblocksare
distributedamongall of thedisksin thearrayratherthan
on a singleparity disk. While RAID’s primarygoalwas
to improveuponsinglediskcost-performance,thisuseof
single-bitparity demonstratedthatevena small amount
of redundancy in spinningdatacould dramaticallyin-
creasethat data’s expectedlifetime. The meantime to
failureof suchanarraywascalculatedto beanorderof
magnitudegreaterthandatastoredon asingledisk.

7.2 Digital Libraries

Researchin the areaof digital libraries is now several
yearsold. This field aimsto take conventionalinforma-
tion — like books,pictures,or video — andstoreit in
aneasily-used,strongly-durableformat.Digital libraries
attemptto addressthearchivalgoalsof durabilityandus-
ability. Thesesystemsstriveto provideeasy-to-useinter-
facesto vastamountsof data,notonly for easeof reading
andsearching,but alsofor easyannotationof documents.

Oneprojectcurrentlyimplementingadigital library is
RobertWilensky’s Digital Library Projectat UC Berke-
ley [20]. Wilensky’s group usesa testbedcalled the

17



“California EnvironmentalDigital InformationSystem”,
an online repositoryof variousdocumentspertainingto
environmentalinformation. This systemstoresits data
on informationservers which are implementedusinga
databasemanagementsystem. In this way, it leverages
existing technologiesfor datastorage,indexing, andre-
trieval. A usercanentera legacy documentinto thisdig-
ital library by scanningit into a computerandfilling in
metadataaboutthedocument(suchasauthorandtitle).

Userscansearchfor informationusinganapplication
implementedby Wilensky’s team,or they canusea new
extensionto UC’sDigital Library calledCheshireII [12]
. CheshireII provides a natural languagesearchon a
vastdatabaseof documents,and is capableof conven-
tionalBooleanresultsto searchesaswell asprobabilistic
matchesto queries.CheshireII movestheprocessingof
queriesto theserversstoringtheinformation,sothatthe
clientmustonlyprocessthepositiveresultsof itsqueries.

UC’sDigital Library Projectalsomakesuseof “multi-
valentdocuments”to [21] enableusersto annotatedoc-
umentswith their own personalcomments.Oneof the
primegoalsof thisextensionis to supportdocumentfor-
matsand documentmanipulationswhich have not yet
beendeveloped.

7.3 Inter net Ar chive

A projectvery similar in spirit to digital library projects
is theInternetArchive project[1] , begunin 1996in or-
der to permanentlyarchive digital informationof histor-
ical interest. The archival goalsof the InternetArchive
are durability and usability. The InternetArchive per-
sonnelnote that muchof the Internet(as well asother
new forms of medialike radio and television) is going
largely unarchived; oncea web site dies, the informa-
tion on it is goneforever. They arealsoconsideringthe
deprecationof dataformats,andarecollectingemulators
for dataformatsso that the information they storewill
beusablein thefuture. Currently, theArchiveboasts

-C�
Terabytesof saved data. Unfortunately, it is not highly
available. To usethearchive, onemustfill out andsub-
mit aproposal.Additionally, theArchive’susersmustbe
proficientin Unix programming.TheArchive’s mecha-
nismsfor durability areconventional;datais storedon a
seriesof Linux boxharddrivesandtapes.

7.4 Intermemory

A work currently in progresswhich closely resembles
theOceanStoreArchive is Intermemory[9]. Concerned
primarily with the archival goal of durability, this work
introducedthedistributionof erasure-encodedfragments
into the wide areaas an ideal mechanismfor archival

storage.It is a subscriber-based,peer-to-peerstoragein-
frastructure. A userof an Intermemorydonatesfor a
small amountof time an amountof storagefor useby
othermembers,and in exchangereceivesa smallerbut
morepermanentamountof storagein the Intermemory
for his own personaluse. For example,Bob could pro-
videoneGigabyteof hisown diskspaceto anIntermem-
ory for oneyear;in exchange,hewouldreceivetwo hun-
dredMegabytesof spacein thatIntermemoryfor therest
of its existence.

By breakingobjectsup into
�(,

or even
� ) ,@- frag-

ments,Intermemoryusesthe law of large numbersto
helpensurethelong-termdurability of thedatait stores.
BecauseIntermemorydealsin suchlargedurabilities,it
useslevelsof indirectionin its locationscheme,so that
a singlevirtual Intermemoryaddresscanbe usedto re-
trieve all of an object’s fragmentseven after all of the
original storageserversarelong dead.

Intermemory’s repair mechanismreplacesdeadstor-
ageserverswith freshInteremorydaemons[5]. Thefault
detectionin Intermemoryis at a servergranularity;each
serverhasthirty-two “neighbors”,eachof whichpoll the
server to determineif it is still alive. If it fails to respond
after too long a period,thesystemwill replaceit with a
new node.In thisway, aparticularserver’sarchiveddata
is asrobustasthatserver’s thirty-two neighbors(that is,
its archived informationsurvivesso long asone-halfof
its neighboarssurvive). Additionally, by reconstructing
a logical fragmenton a new machineusing Intermem-
ory’s protocols,thesystemsolvesthe mediaconversion
problem(so long as the information was convertedto
Intermemory’s encodingformat when it was originally
archived). Unfortunately, this schemeplacestheburden
of fault-detectiononto theclient, which maybe infeasi-
blefor thoseclientswith intermettitentor low-bandwidth
connections. The authorsof Intermemoryalso briefly
mentionwhatthey call archival semantics, meaningthat
theformatof anarchivedobjectmayeventuallybecome
unsupported,making the documentunreadable. They
recommendthe use of emulatorsto make such docu-
mentsusableaslongasthey aredurable.

7.5 PAST and FarSite

PersistenandAnonymousStoragein aPeer-to-PeerNet-
working Environment(PAST) [7] is a project strongly
similar to OceanStore.Their archival goalsaredurabil-
ity, availability, and,becausethey supportstorageon the
untrustedwidearea,security. They seekto achievethese
goalsby replicatingfiles storedin PAST on severalma-
chines,locatableby their overlay-network routing layer,

18



Pastry 5. No repair schemehasyet beendescribedfor
documentsstoredin PAST, implying that their current
durability is comparableto thatof today’sdiskdrives(an
approximateMTTF of fiveyears).

Anotherprojectout of Microsoft Researchis FarSite
[4]. FarSiteis similar to PAST in thatit ensuresfile dura-
bility throughreplication. Unlike PAST, FarSiteis not
intendedto scaleglobally, but securityis still oneof Far-
Site’s goals,sincethey assumethe presenceof incom-
pletely trustedclients. While FarSitedoesnot describe
a fault-detectionor repairscheme,they do focuson the
availability metricsof their system. In particular, they
observe that a documentin FarSite is highly available
becauseall of themachinesstoringit mustbedown for
it to beinaccessible.

8 Futur e Work

Two key aspectsof the OceanStorewhich arestrongly
relatedto repair still requirediscussion.First, thereis
the problemof billing. OceanStoreis intendedto be a
storageutility. Therefore,storageserversmustbe able
to chargeusersfor the datathey store. The responsible
partyis ideallysuitedto this task,becaueit is financially
chargedwith thesurvivalof itsclientsdata.Thus,storage
serverschargefragments’responsibleparties,andthere-
fore fragmentsmustcarrywith themtheGUIDs of their
responsibleparties. A securityproblemis also tightly
relatedto both billing and repair. A maliciousserver
could potentiallystoreall of an object’s fragments,ad-
vertisethemto Tapestry, andproducethemwhenasked
by a sweep. This server would thus prevent Tapestry
andtheresponsiblepartyfrom detectingany failing frag-
ment.Presumably, onceenoughof thefragmentson the
legitimatestorageservershaddied,themaliciousserver
would stopstoringthe fragments,effectively killing the
document.

A solution to both of theseproblems must use a
methodof authenticatingstorageservers. That is, there
mustbeakey which theresponsiblepartystoresin addi-
tion to theGUID of anerasure-encodedobject,andthis
key must validatethe GUID of any server claiming to
storea fragment. A server billing the responsibleparty
for a fragmentincludesin the bill the fragment’s GUID
andadditionalinformationwhichwill producethebilling
key for thefragment.Onesimpleway to producesucha
key is to useahierarchicalhashover thestorageservers’
GUIDs; eachserver would includein its bill thesibling

5For athoroughdescriptionof themechanismsandalgorithmsused
in Pastry, seehttp://www.cs.berkeley.edu/ravenben/publications/CSD-
01-1141.pdf

hashesnecessaryto hashfrom its serverGUID to theob-
ject’s key. Whenever repairoccurs,this key mustbeup-
datedto reflecttheserverGUIDsof new storageservers.
The key can also be usedby Tapestrynodesto verify
thataparticularserver is a legitimatestorageserver for a
fragment.

9 Conclusion

Thereis a growing demandfor distributeddataarchives.
OceanStoreseeksto meetmost of the applicationde-
mands for preserving the bits, and leaves the prob-
lem of archival semanticsto application developers.
OceanStoreensuresthe integrity of its databy meansof
cryptograhpichashes,andit provideshighdurabilityand
availability of its datausingerasurecodes.Essentialto
theuseof erasurecodesis thepresenceof faultdetection
andrepair. Wehaveseenthat,usingTapestry, thesystem
can efficiently detectthe failuresof fragmentsthrough
pointerheartbeatsandby periodicallysweepingthedata.
We have alsoseenthat it is unnecessaryto usethe re-
sponsiblepartiesin OceanStorefor fault detection.The
durability and availability of objectsin the distributed
repairschemespresentedin this work aresufficient for
maintainingdocumentsfor thousandsof years.

References
[1] Internetarchive. http://www.archive.org/xterabytes.htm.

[2] Summaryon linear vs. helical recordingtechnologiesin
entry-level to mid-rangetapebackupproducts.1998.

[3] ANDERSON, T., CULLER, D., AND PATTERSON, D. A
casefor now (networksof workstations),1995.

[4] BOLOSKY, W., DOUCEUR, J., ELY, D., AND THEIMER,
M. Feasibilityof a serverlessdistributedfile systemde-
ployed on an existing set of desktopPCs. In Proc. of
Sigmetrics(June2000).

[5] CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A.,
SOBTI , S., AND Y IANILOS, P. Prototypeimplementation
of archival intermemory. In Proc. of IEEE ICDE (Feb.
1996),pp.485–495.

[6] CHERVENAK , A. L . Tertiary storage:An evaluationof
new applications,1994.

[7] DRUSCHEL , P., AND ROWSTRON, A. PAST: A persis-
tentandanonymousstore.http://www.research.
microsoft.com/˜antr/PAST/ , February2001.

[8] GILDER, G. Fiber keepsits promise: Get ready. band-
width will triple eachyearfor thenext 25. Forbes(Apr.
1997).

[9] GOLDBERG, A., AND Y IANILOS, P. Towardsanarchival
intermemory. In Proc.of IEEEADL (Apr. 1998),pp.147–
156.

19



[10] GRAY, J., AND SHENOY, P. Rulesof thumbin dataengi-
neering.Tech.Rep.MS-TR-99-100,MicrosoftResearch,
Mar. 2000.

[11] KUBIATOWICZ, J., ET AL . Oceanstore:An architecture
for global-scalepersistentstorage. In Proc. of ASPLOS
(Nov. 2000),ACM.

[12] LARSON, R., AND CARSON, C. Informationaccessfor a
digital library: Cheshireii andtheberkeley environmental
digital library. In Proceedingsof the 62ndASISAnnual
Meeting(Nov. 1999).

[13] LUBY, M., M ITZENMACHER, M., SHOKROLLAHI , M.,
SPIELMAN, D., AND STEMANN, V. Analysisof low den-
sity codesand improved designsusing irregular graphs.
In Proc.of ACM STOC (May 1998).

[14] NIST. FIPS186digital signaturestandard.May 1994.

[15] PATTERSON, D., GIBSON, G., AND KATZ, R. A casefor
redundantarraysof inexpensive disks(raid). In Proceed-
ingsof 1988ACM SIGMODInternationalConferenceon
Managementof Data (1988).

[16] PATTERSON, D. A., AND HENNESSY, J. L . Computer
Architecture: A QuantitativeApproach. Forthcoming
Edition.

[17] PLANK , J. A tutorial on reed-solomoncodingfor fault-
tolerancein RAID-lik e systems.Software Practiceand
Experience27, 9 (Sept.1997),995–1012.

[18] PLAXTON, C., RAJARAMAN, R., AND RICHA , A. Ac-
cessingnearbycopiesof replicatedobjectsin adistributed
environment.In Proc.of ACM SPAA (June1997).

[19] ROE, M. Performanceof protocols. In Proceedingsof
SecurityProtocolsWorkshop(1999).

[20] WILENSKY, R. Toward work-centereddigital informa-
tion services. IEEE ComputerSpecialIssueon Digital
Libraries(May 1996).

[21] WILENSKY, R. Digital libraries resourcesas basisfor
collaborative work. Journal of theAmericanSocietyfor
Information(Feb. 2000).

[22] ZHAO, B. Y., KUBIATOWICZ, J., AND JOSEPH, A. D.
Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Submittedfor publication
to SIGCOMM, http://www.cs.berkeley.edu/
˜ravenben/tapestry.pdf , 2001.

20


