The OceanStorérchive: Goals,StructuresandSelf-Repair

ChrisWells
ComputerScienceDivision
Universityof California, Berkeley
cwells@cs.beréley.edu

Abstract

Theincreasingamountof digital data,originating from

corporations and individuals alike, is driving the need
for digital archivesforward. Thiswork discusses sys-
temdesignedo meetthis need the OceanStoe archive

This systemstores documentsn a secue manner and
provides high availability and durability. We describe
the structures and algorithms usedin the OceanStos
archive and presenta distributedfault detectionandre-

pair schemewhich males use of OceanStae’s routing
andlocationlayer, Tapestry

1 Intr oduction

Thereis a growing demandfor the automatic,online
archiing of digital data.For decadesindustryandother
usershave relied on tapeto back up their critical data,
but this schemeequiresa humanadministratoto main-
tainthetapedrives file seners,andthetapegshemseles.
As theamountof digital datain theworld explodes this
maintenancevill becomeoo costlyto befeasible.Many
differentprojectsarecurrentlyarchiving digital data,in-

cludingdigital libraries[20] andtheInternetArchive[1].

At the sametime, thereareseveral projectsdedicatedo
distibuting and preservingdigital datafor long periods
of time, amongthem Intermemory[9], PAST [7], and
OceanStor¢ll].

OceansStorén particularseeksto maintainits users’
privacy throughend-to-endencryptionwhile simultane-
ouslyguaranteeinghe integrity of their data.Intermem-
ory and OceanStordoth useerasurecodesto more ef-
ficiently guarante¢he long-termdurability of their data,
asopposedo the moretraditionaltechniqueof replica-
tion like thatusedin PAST. The practiceof distributing
onesdataacrosshewide arearequiresheuseof afault
detectionandrepairscheme.OceanStorenust provide
suchaschemsdf it is to meetthe challengeof long term
survivability of its data. This work discusseshe goals
andcurrentstatusof distributeddigital archives. It then

describeghe basic mechanismsand structuresusedin
theOceanStoreFinally, we presentafault detectiorand
repairschemdor the OceanStoravhichis feasiblegiven
today's availablehardware.

2 Archive Overview

An archiveis ary repositoryin which informationis pre-
sened. Differenttypesof archivesexist today for dif-
ferenttypesof data. For example,a bankwill keepa
vigilant recordof all of its clients’ transactionsFor the
pastfew decadesthesetransactionhiave beenrecorded
and saved on magnetictape. More public examplesin-
cludetheLibrary of Congresswhich store20 Terabytes
of informationin the form of text in books,andthe Lu-
vre, which storesover 6000 paintingsfrom the 13t o
the 19N centuries.A moremodernarchive is the Inter-
netArchive[1] , which currentlycontainsapproximately
43 Terabyteof pastandpresentvebpages.

2.1 Archival Goals

Thetype of datastoredin archivesvaries,andthe poten-
tial audiencdor eacharchie differs (a bankshouldnot
revealthetransaction®f anindividual clientto thegen-
eralpublic, but theLibrary of Congresss availableto ev-

eryone).While the mediaof eacharchive differ aswell,

the underlyingprinciplesof eacharchive arethe same.
Every archive mustaddresdive basicarchival goals

Durability: The durability of an archie’s datais the
mostdistinguishingfeatureof an archive. Archivesex-
ist to presere data“for the ages”, so a good archie
mustprovide high levels of durability for its data. Non-
electronicmedia such as books and picturesfind high
durability in libraries and museumswherethey canbe
protectedfrom the elements. Indeed,the Luvrue has
well-presered paintings which are centuriesold. In
more recent decades,corporationshave turned from
ledgersto magnetictape for long-term data storage.

Thesetapeshave meantime betweenfailuresratedbe-
tween200,000and300,000hours— about30years [2]

— but eventheseresultsaretheoptimisticresultsof con-
trolled laboratoryconditions. Much greaterdurabilities
can be achievzed throughthe use of redundang on on-
ling, spinningstorage(seeSection3.2).

Availability: The value of informationis proportional
to the datas availability; if a booklistedin the Library

of Congresss currently on loan, it is not available to

the public (andis, for the moment,worthless). Good
archvesmuststrive for high availability of their data. If

dataretrieval is too slow, the datamay be effectively un-

available. In this way, availability is relatedto another
archival goal, performance. Many tapearchivestoday
useroboticarmsto multiplex throughhundredsor thou-
sandf tapeswith theentiresetupavailableonline. On-

line availability is highly desirablefor digital archies,
which may containenormousamountsof dataand may
berequiredto servicemillions of users.

Security: Security for an archive has two meanings.
First,if thearchiveis a privateone,only authorizedoar
tiesshouldbe ableto view it. A simpleexampleof such
anarchieis adiary. A privateelectronicarchive might
involvea personshomevidoes.In adigital archive,end-
to-endencryptioncanbe usedto presere the privacy of
documentsSecuritycanalsoreferto theintegrity of the
documentsTheintegrity of adocumenis a similar but
strongerrequirementhanits durability. For instancejf
abookin alibrary werereplacedvith anothebookwith
the samecover, but differenttext, the librarianin chage
of maintainingthe bookwould not notice,but the book’s
datawould have beenaltered.In adigital, onlinearchive,
theintegrity of datacanbe assuredy cryptographically
tying the datas contentto its name.(seeSection3.3).

Usability: If datais notusablejt shouldnotbearchied.
Or, contrapositiely, datashouldonly bearchivedaslong

asit is usable For instanceijf notranslatiorexistedfrom

ancientHebrav into modernlanguagesthe Dead Sea
scrolls would not have beenof such profoundinterest
whenthey were unearthedmerely archaelogicainter

est). Similarly, electronicmediarecordedodaymay be
untranslatabléomorrov — therearefew Betamaxplay-
ersstill in working condition. A more seriousproblem
facingdigital archiistsis the lack of tapedrives avail-

ableto readdecades-oldape. The tapesmay have been
perfectlypresered,but becauseo device existsto read
them,they areunusable Thesetapesaresuffereingfrom

whatis known asthe mediacornversionproblem

Archiveddatais increasinglykeptonline,andin afew

years,it may be periodically migratedto newer media
automaticallythusavoiding the mediacorversionprob-
lem [9]. A more subtle problemis that of preserving
archival semantics a Microsoft Word documentmay
be perfectly presered, but without Microsoft Word (or

anotherappropriateapplication),it cannotbe read. So-
lutionsto this probleminclude preservingemulatorsor

every typeof digital document.

Finally, if a documents privagy is protectedso that
only a limited numberof peoplecanview it, transferof
viewing rightsis necessaryo preventthedocumenfrom
becomingunusable.This transferis relatively simplein
thecaseof physicalarchieslike books.If adocuments
electronic,andis cryptographicallyprotectedthe trans-
fer is a little more complicated. The documentis only
usablesolong asits readkey survives. If anindividual
wishesto passon his readkey to his inheritors,a secure
mechanismmustexist for the transferof the key which
will notleakinformationaboutthe key to otherparties.
Onesimplemechanisnfor anindividual who wishedto
passon his key would be to encryptit usinghis inheri-
tors’ keys, andplacetheresultsin the careof his estates
executor but this schemeelieson thetrustworthinessof
theexecutor

Performance: As mentionedearlier performanceis
strongly relatedto availability. The more quickly data
can be retrieved from or depositednto an archive, the
more valuablethe archive becomes. An excellent ex-
ample of improving the performanceof an archie is
a library’s card catalog. This single index reducesthe
time to find a bookfrom hours(or perhapsvendays)to
mereminutes.In theelectronioworld, indicesareubiqui-
tous. Searchandretrieval timesarethereforedependent
onthe medias seektime andbandwidth.For magnetica
tapes,the readand write bandwidthsare as high as 15
Megabytesper second [6], but the seektime on tapes
can be quite high (750 MB/s for a 25 Gigabytetape,
meaning,on average,a seektime of 33 seconds).lde-
ally, a digital archive shouldhave instantaneousaccess.
More practically a digital archive’s performanceshould
be comparablevith thatof alocal harddisk.

2.2 Hardware Trends

Designingarchivesfor tomorrow requiresa carefullook
at today’s hardwaretrends,andhow they will affect to-
morron’s capabilities. The trendsin moderncomputing
arerelatedto Moore’s Law, in thatmostdigital technol-
ogy is currentlyimproving exponentially Thesetrends
cannotcontinueforever, but they canpersistfor the next
twenty years. Threegeneralmetricsin particularare of

interestandwe will seewhatthesemetricslook like to-
dayandwhatthey will bein twentyyears.

Capacity Thecapacityof storagedeviceshasbeengrow-
ing with Moore’s Law. In particular disk capacityis
growing ataphenomenalate,doublingevery 18 months
to today’s capagity of roughly 100 Gigabytes. This
trendhaskeptwhatis essentiallyonetechnology(mag-
netic platters)at the forefront of secondarystoragefor
decadesandit shovsnosignof abating.Indeed dataon
corventionalharddiskscanbecomemore denseandin
twentyyearsthe 100-foldincreaseperdecaden density
will yield disks capableof storingone petabyte.If this
trend continuedfor fifty years,a singlehharddisk could
storeone Zettabyte,or one billion trillion bytes. This
numbercomesperilously closeto violating the maxi-
mumdensityavailablewerewe ableto controlindividual
atoms,so the exponentialincreasen disk capacitywill
likely endbeforethen. Still, evena petabyteof storagds
immense.

While thecapacityof tapeshasbeerkeepingpacewith
that of disks,the cost-capacityof tapeshasnot. In the
past.the costof a byte of diskwasroughlytentimesthat
of a byte on tape. Today however, this ratio hasbeen
reducedromtento threg[10]. In termsof capacitythen,
tapesarebecomedessattractie relative to disks.

Bandwidth Thetransferrateof availablehardwareis of

critical importancewhen designingan archival system.
As previously mentionedfoday’stapesystemsantrans-
fer 15Mb/s. Diskshavearoughlyequivalenttransferate
(25Mb/s). Liketheir capacity harddisk’'stransferrateis

growing exponentially The rate of growth, however, is

muchsmallerthantherateof growth for capacity— dou-
bling onceevery threeyears. The capacity/ bandwidth
ratio of harddisksincreasegentimesperdecadd10].

An interestingobsenationmadein [3] is thatnetwork
bandwidthis beginning to outstrip disk bandwidth. In
fact, Gigabitetherneis onthehorizon.Moore’s Law for
network bandwidthstatesthat link bandwidthwill dou-
ble every 18 months.Thedeploymentof links, however,
is outpacingthis prediction.G. Gilder predictedn 1995
that deployed network bandwidthwill triple every year
for the next twenty-five years[8] . Accordingto [10],
todayss fiber optics have a bandwidthof 40 Gbps. In
another20 years,thesesinglelinks could be aslarge as
400 Thps. By the samefactor today’s 100Mbpsether
net could be replacedin 20 yearswith Thpslines. By
comparisondisk bandwidthwill be only 2.5 Gbps. It
would seemthen,thatanidealarchive would stripedata
over alarge numberof disksto reducethe costof reads,
allowing the archive’s bandwidthto approachnetwork

today 20years
CPU 1 GHz 10THz
disk capacity 100GB 1PB
disk bandwidth 25Mbps | 2.5Gbps
network bandwidth| 100Mbps | 1 Thps

Figure 1. Summaryof hardware capabilitiestoday and
20yearsin thefuture.

bandwidth.

Finally, someforms of archival encodingmay require
computationavhich exceedthoserequiredfor 1/O oper
ations.CPU speedsnaythereforebe critical in termsof
anarchie’s effective bandwidth.Moore’s Law for CPU
speedsstateshat CPU speedsioubleevery 18 months.
Today's CPUsarerunningat 1 GHz, soin twentyyears,
we could seea processocapableof 10 THz, or 10,000
timesfasterthantoday’s processors.

Latency Latenciesareimproving atamuchmoremodest
pacethanarebandwidths.Indeed network latenciesare
alreadysignificantfractionsof the speedof light. A sin-

glemessagerossingheUnited Stategsodaytakes30ms,
andbarringa revolutionin physics,it will take 30msfor

the restof humankinds existence. Disk seekandrota-
tion timeswill fair slightly better improving at a rateof

approximately8Today onehalf a rotationtakesroughly
3ms,andseektimesareaboutéms. This givesusa la-

tengy of 9msfor a randomseek. In twenty years,this

numberwill bereducedo 1.7ms.Currenttrendsin soft-

wareto offsetthe disparity betweenseektimesof disks
and disk bandwidthand capacityinclude queueing(so
that accessesre prioritized basedon their physicallo-

cationson the disk ratherthanthe orderin which they

arrived)andcachingmoredatain anever-growing main
memory

Summary The problemswith disk seektime andband-
width canbe mitigatedby observinghatmorediskscan
always be addedto the network. A single machines
bandwidthto the Internetwill likely be that of a single
link. Further the CPU power availableto a single ma-
chinewill be within a small constantfactorof the CPU
power of a uniprocessorThesetwo trends,then— net-
work bandwidthand CPU power — will determinethe
available bandwidthto any distributedarchive. The la-
teng of a wide-areaarchive will, without caching,nec-
essarilybe ontheorderof tensof millisecondsdueto the
speedof light. The capabilitiesof hardwarewe expect
now andin twentyyearsaresummarizedn Figure2.2

Va == Version #
—= == GUID
M == MetaData

Check Point == V;

Checlk Point == ¥y

Encoded
Fragments:
Unit of Archiveal

Verification
Tree

LA
QC'D*'— GUID of d;

Fragments:
Unit af Archival

Verification
Tree [N

GUID of d'g— ™

Figure2: Thedataobjectstructure.

3 Archive Data Structures

An archiveis alinearsequencef versions whichin turn
arelinear sequencesf bytes. For example,a file may
be consideredanarchive, andits contentsat a particular
day andtime are oneversionof thatfile. A distributed
archive suchasthat in OceanStorgequiresthat every
objectstoredbe locatedby a globally uniqueidentifier
(GUID). It alsorequiresthatthereexist two basictypes
of GUIDs: aversionGUID (V-GUID) namesa specific
versionof anarchive;anarchive GUID (A-GUID) is the
nameof anarchive,andit canbeusedo requesfromthe
archival systemthe mostrecentV-GUID of thatarchive.
This section describesthe data structuresused in
OceanStordo storeandrepresenthe datacontainedn
the archival system.We first describethe basicdataob-
jectstructure andthenmove on to describehow we sup-
plementthat structureto provide strongdurability and
integrity guaranteeaswell astight bindingto GUIDs.

3.1 VersionRepresentation

An archival system— especiallya distributedarchive —

may containversionsso large that a typical client can-
not cachethemin their entirety An archial systemmay
alsopossesarchiveswhich have small updatesapplied
to themregularly. To addresshoth of thesefeatures,
OceanStoreisesthe DataObjectstructureshown in the
dashedoxin Figure2.

A version of an archive is an array of bytes.
As in mary filesystemsand virtual memory systems,
OceanStorebreaksa versions array of bytes up into
uniform-lengthblocks The blocks form the leaves of
a B-tree,which is shawvn in the dashedbox. A block’s
parentin the tree mustcontainlocationand verification
information for that block. In OceanStorethe parent
block storesits childrenblock’s GUIDs, which are suf-
ficient for both locationand verification. In this way, a
clientcanrequestndverify ablock aslongasit hasthe
block’s parent.Notethata client cancacheasfew or as
mary blocksasneededthe entire B-tree doesnot have
to bestoredasassingleunit.

As mentionedn Section3.3,the GUID of a block is
the root hashin a hierarchicalverificationtree over the
block’s dataand its fragments. The GUID of the top
block is calculatedin exactly the samemanneras the
GUIDs of otherblocks,but it is usedasthe V-GUID for
the data. A userof OceanStoreanrequestary piece
of datain the B-treegivenits V-GUID andan offsetin
the data. The top block is alsouniquein thatit hasap-
pendedto it metadatafor the archive and version,and
thesewo entities— B-treeinformationandobjectmeta-
data— areencodednddisseminatedsasingleblock of
information. The metadataancontaininformationsuch
asowneridentification,accesontrol,andtheVV-GUIDs
of pastversions.It canalsobe usedby applicationwrit-
ersto solve thearchival semanticgproblemby including
in the metadatahe GUID of anappropriateemulatorfor

thatobject.

A client modifying a data object can use copy-on-
write to prevent having to rearchve all of the old ver
sion’s data. A client canchangea single datablock in
the version,which will resultin the block hashingto a
new block GUID. This new GUID mustbe storedin the
block’s parent,so the parentblock will changeaswell,
producinganew GUID. Thechanges propagatedip the
B-tree,sothatchanginga singledatablock will resultin
a numberof blocksequalto the heightof thetreeto be
changedandthusrequireredisseminationTo alleviate
thestorageoverheadnherentin thisschemeQceanStore
alsomakesuseof loggingbetweerversions.

3.2 A Casefor Erasure Codes

Section 3.1 reducedour storageinterface to that of
a block store. To store versionsof archives in the
OceanStoreyethereforeneedonly storein adistributed
and durablemannerthe blocks of thoseversions. The
most commonmethodsusedto achiese high durability
of dataarecompletereplicationandparity schemesuch
asRAID [15]. Theformerimposesextremelyhigh stor
ageoverheadsizein storagds severalfactordargerthan
original data),while the latter doesnot provide the ro-
bustnessnecessaryto survive the high rate of failures
expectedin the wide area. Erasurecodesare a super
setof theseclassicmechanismsvhich provide extremely
high durability andavailability withoutimposinganun-
reasonableverheadn storagespace.

Using erasurecodes,a usercanbreakup a block into
n fragmentsandrecodetheminto kn fragmentswhere
k > 1. Suchencodingincreaseshe sizeof the databy a
factorof k. Wereferto 1/k astherate of encoding.The
key strengthof erasurecodesis that the original block
can be reconstructedrom any n fragments. Figure 2
illustratesthe fragmentsof block d1.

There are a numberof erasurecodeswith different
performancecharacteristics. Some, such as Tornado
Codes[13], scalelinearly with the number of frag-
ments. Tornadocodesin particular can reconstructan
objectvery quickly, but do so only with high probabil-
ity and only in the presenceof slightly more thanone
half (for rate one-half)of the fragments. Theseproper
ties make TornadoCodesappropriateonly when large
numbers(hundredsto thousandspf fragmentsare be-
ing produced.The “Reed Solomon”[17] family of era-
sure codesare popular but have encodingtime scal-
ing quadratically making them practical only for rela-
tively small objects. Becausewe encodesmall blocks
in OceanStorewe chosean effiecient versionof Reed
SolomoncalledCauchyReedSolomoncodes.

Failure distribution of hard disks
1800 T T T

T T
Measured
1600 [r] 1

1400 {t g
1200 { e
1000 f g
800 ft e
600 |1

400

Nﬂﬂﬂﬂﬂﬂﬂﬂﬂ i

0 10 20 30 40 50 60
Age in months

Number of failed disks per million disks

Figure3: Disk failuredistribution

3.2.1 Availability

Erasurecodingexploits the statisticalstability of a large
numberof independentomponents. The availability

of an object increaseswith the number of fragments
andrate of encoding. As the fraction of the fragments
neededo reconstrucan objectdecreaseghe probabil-
ity of reachingenoughfragmentsfor reconstructiorin-

creases. Similarly, asthe numberof fragmentsfor an

objectgrows, the probability that not enoughfragments
areavailablefor reconstructiordueto network partitions
and machinefailuresdecreases.The availability of an

objectcanbe summarizedsfollows:

P, probabilitythatanobjectis available
ry maximumsafenumberof unavailablefragments
f totalnumberof fragments

n totalnumberof machinesn theworld

m numberof currentlyunavailablemachines

PFZ;(Z-)(“) o

(7)

This formula stateshatthe probability thata block is
availableis equalto the numberof waysin whichwe can
arrangeunavailable fragmentson unreachableseners,
multiplied by the numberof waysin which we canar-
rangeavailablefragmentson reachableseners, divided
by thetotal numberof waysin which we canarrangeall
of thefragmentson all of the seners.

For instancewith a million machinesten percentof
which are currentlydown, simply storingtwo complete
replicasprovidesonly two nines(0.99) of availability. A
1/2-rateerasurecodingof adocumeninto 16 fragments
givestheblock overfive ninesof availability(0.999994),
yet consumegshe sameamountof storage. With 32
fragments,the availability increasesy anotherfactor

MTTF (years)

le+60
le+50 F
le+40 F
1e+30 F
le+20 F
le+l0 F

L E¢

Number of
fragments
10 (rate = 2)

15

’ 2
Repair Epoch 35
(months) 70

Figure4: MeanTime to Failure of aBlock

of 4000, supportingthe assertiorthat fragmentationin-
creasesavailability. Thisis aconsequencef thelaw of
largenumbers.

3.2.2 Durability

An analysisof the MTTF of fragmentsand fragmented
blocksis alsoessentiain motivating the useof erasure
codes.Disk failure distributionsobtainedfrom [16] and
shavn in Figure 3 indicatethat while disks have some
infantmortality, a high numberof themsurvivethedura-
tion of their servicelife of five years.Usingthesenum-
bers,we determinedhatthe ageof a randomlyselected
diskwasuniformly distributedfrom zeroto sixty months.
Thisallowsusto calculateheexpectedifetime of afrag-
mentafterdisseminationandultimatelyto calculatethe
meantime to failure of an entire block. We acceptthe
simplifying assumptiorthat all fragmentswould fail in-
dependentlyno senersbehae maliciously andthatthe
repairmechanisnwould (if theobjectwasstill alive), pe-
riodically reconstrucandre-disseminateveryfragment.
Our parametersnclude the rate of encoding(1/2), the
numberof fragmentgvaryingfrom 4 to 64 in increments
of 4), andthe length of the repairepoch(varying from
1/4 monthsto 4 monthsin incrementf 1/4 month).

Figure 4 shaws the resultsof our calculations. The
scaleof the MTTF axisis exponential indicatingthatthe
MTTF of objectsscalessupetlinearly with the inverse
of the repairepoch. A more exciting resultis that the
MTTF of objectsscalesexponentiallywith the number
of fragmentsWith twelve fragmentsandarepairtime of
two weeks,we seethatan objecthasan MTTF of over
onehundredbillion years.

3.2.3 A Mole of Bytes

Humanitycurrentlygeneratesn estimated .5 exabytes
of dataperyear An archival systenshouldbedurableon
the orderof 1000 years,soa capacityof over 10%! bytes
is desirable This numberis closeto onemole(6 x 10%%)
of bytes. The mechanismslescribedn the preceeding
sectionscombinedwith theincreasingcapacityof disks
andnetworks, make it possiblefor the first time to pos-
tulate the storageand maintenancef a mole of bytes.
Putanotherway, what are the resourcesieededo pre-
ventthe lossof a singlebytein a mole of bytesfor one
thousandyears? Assumingthat encodedobjectsfail in-
dependentlythe analysisperformedfor a singleobjects
MTTF canbeextendedo any numberb, of objectssim-
ply by taking the b** root of the desiredprobability of
failure (in our case,5).

Using the repair schemedescribedin Section3.2.2,
with sixty-four total fragmentsarate1/4 erasurecode,
anda repairepochof ten months,a mole of bytes(bro-
ken up into 4kB blocks, can be expectedto fail after
twenty-seenthousandyears.The repairmechanisnfor
a mole of bytesrequiresthat onebillion billion bits be
transferredper second. If we assumehatthereareten
billion machinesin the world, the bandwidthrequired
per machineis thereforeone hundredMbs. This num-
beris within oneorderof magnitudeof today’s network
capacity indicatingthata wide-areaarchival systemcan
successfullyscaleto serviceone mole of bytes. Scala-
bility becomeseven more feasiblewhen more efficient
repairschemesreused— schemesvhich only transfer
fragmentawhich requirereconstitution. Additionally, as
network bandwidthgrows with Moore’s Law, increasing
numbersf byteswill becomamaintainable.

3.3 Naming and Integrity

Now thatwe have a distributed,durableblock store,we
needa mechanismby which to nameand locate indi-
vidual archives,versions,andblocks. As statedin Sec-
tion 3.1, a versions V-GUID is merelythe block GUID
of its B-tree'stopmostblock. Thus,only two basictypes
of GUIDs needbe produced.This Sectiondescribesion
block GUIDsandarchive GUIDs arecreatecandverified
in thearchval system.

3.4 Naming and Verifying Blocks

Erasure coding requires the precise identification of
failed or maliciously corruptedfragments. As a result,
the systemneedsto detectwhen a fragmenthasbeen
corruptedandthrow it away. We thereforeintroducea
secureverificationschemeor fragments.

GUID

N

H14

H12 H34

T A e

Block I:l lF:ralgmlgls l:l
(a)

Fragment 1‘; frag dat%‘ HZHH?:AH Hd‘

Fragment 2‘: frag dataﬂ H1HH34H Hd‘
(b)

Figure5: The block GUID is the root hashin a binary
verificationtreeof hashe®verthefragmentsanddataof
ablock

For eachencodedlock, we createa verificationtree
over its fragments. Figure 5(a) is a binary verification
tree. The schemeworks asfollows: We producea hash
over eachfragment,concatenatéhe correspondindnash
with a sibling hashto producea higherlevel hash,and
continuethe algorithmuntil thereis atopmosthash.We
thenstorewith eachfragmentall of thesibling hashego
thetopmosthash,a total of log n hasheswheren is the
numberof fragments Figure 5(b) shovs the contentsof
a “disseminationfragment”. The hashat the root of the
treeis the GUID of the block. To ensurethatotherdata
doesnot hashto thesameGUID, we usethe SHA-1[14]
securehash.

Onreceving afragmentfor recoalescingaclientver
ifies it by hashingover the dataof the fragment,con-
catenatinghat hashwith the sibling hashstoredin the
fragment,hashingover the concatenationand continu-
ing this algorithm until thereis a topmosthash. If the
final hashmatcheghe GUID for theblock, thenthefrag-
menthasbeenverified; otherwise the fragmentis cor-
ruptandshouldbediscarded.

A GUID shouldnot only verify a fragment. A block
shouldbe verifiableagainstits GUID independenbf its
fragments A simpleextensionto the above schemesuf-
fices.Oncetheroothashfor thefragmentof ablockhas
beencalculatedijt canbeconcatenatedith ahashof the
block’s unencodedlata,andthe hashof this concatena-
tion will thenbetheblock’sandfragments’GUID. Each
fragmentwill storeoneadditionalhash(thehashoverthe
block’'sdata) but theblock— coupledwith therootfrag-
menthash— will beverifiableagainstheblock GUID.

3.5 Naming and Verifying Archives

While eachversionof anarchive possessea GUID, the
entirearchive mustalsohave a GUID (throughwhichits

Archive GUID

[
—Secure Hash——

‘ Owner’s Public K%J(Name‘

|
— Signature——

‘ RP Public KeH RP GUID‘

o
— Signature !

‘ PR Public KeHERP oubiic kel PR Private Key

.
— Signature—

Version GUID

Figure6: A tombstonds a securemappingfrom an A-
GUID to a V-GUID. The V-GUID is signedby the pri-
maryring’'s key, whichin turnis signedby theresponsi-
ble party’s key. Theresponsiblgarty’s key is signedby
theowner’skey, whichis verifiableby a secureéhashthat
produceghe A-GUID.

mostrecentversionor pastversionscanbe requested).
Theremustexist a securemappingin the archval sys-
tem from the archive’s A-GUID to the V-GUID of its
mostrecentversion. This mappingcanexist in one of
two formsin OceanStoreThe archive may have anac-
tive primaryring, which is a setof senersusingByzan-
tine Agreemenprotocolsto maintainthe A-GUID to V-
GUID mapping®. If no primaryring exists,themapping
is storedin tombstonesso namedbecausehe primary
ring putsthemin placein the eventof its death.

A tombstondor a particulararchive is namedand|o-
catedby thatarchive’s A-GUID, andit containghe pub-
lic key of thearchive’s owner, the GUID andpublic key
of the archive’s responsibleparty; the public key of the
archie’s lastprimaryring, the human-readableameof
thearchive, andthe latestV-GUID of the object. These
itemsarearrangedasshavn in Figure 3.5, sothateach
of themis verifiableagainsthe A-GUID. Thus,atomb-
stoneis completelyverifiableby its archive’'s GUID: one
needsimply hashover the concatenatiomf the owner’s
public key and the archive’s human-readabl@ameto
verify the owner’s public key againstthe A-GUID, use
the owner’s public key to verify the responsibleparty’s
public key, usethe responsiblgarty’s public key to ver-
ify theprimaryring’s public key, andthenusethis public
key to verify the tombstones signatureof the V-GUID.
When a primary ring producesnew tombstonedor an
archive, it routesthemto the storagesenerscontaining
theold tombstonedor thatarchive. Thesesenersverify
the new tombstonesndthenoverwritetheir oldercoun-

IPrimaryor ByzantineRingsarediscussedn moredetailin [11]

Serializer

/

Figure7: TheOceanStoreasanarchival systemjs com-
posedof clients,serializersandstorageseners. Writing

clientsmustcommunicatavith theserializerbut reading
clientscancommunicateitherwith theserializeror with

the storagesenersdirectly. In OceanStorethe primary
ring senesasthe serializer

Cllents

terparts.n thisway, the A-GUID to V-GUID mappingis
madedurablethroughreplication. By replicatingtomb-
stoneswe alsoenablethemto be repairedin the same
way asfragmentgdiscussedater).

In the presencef aresponsiblearty, the useris able
to senda requestto the archial systemfor a file even
if no primaryring is currentlyactive. The requestwill
beroutedto thetombstonegor the object,whichin turn
aresentto the responsibleparty. The responsibleparty
spavns a new primary ring which begins servicingre-
quests.

4 Interfaces

The archival layer of OceanStordnasbeendescribedas
ablock storagesystem.With theadditionof tombstones,
it alsomuststoremappingfrom A-GUIDs to V-GUIDs.
This secondtype of storageis more complicatedthan
merelystoringread-onlyblocks,becauset requiresthe
archival systemto synchronizeandserializeversionsof
an archve so that the entire systemconsidershe same
distinctV-GUID asthe mostrecentV-GUID for a given
A-GUID. The archival systemthereforerequiresa seri-
alizer for eacharchive which acceptsupdatesfrom au-
thorizedclients, appliesthemin a sequentiabrder and
recallsthe V-GUID of themostrecentlycreatedsersion.
Figure 4 depictsthe relationshipsamong OceanStore
client machinesthe serializer and OceanStorestorage
seners.

This sectiondescribesheinterfacewhich thearchial
layer mustimplement. This interfaceis usedboth by
clients communicatingwith the primary ring and the
storagesenersandby the primary ring itself. We also
describeheinterfacewhich eachstoragesenermustim-
plement.

4.1 Archival Layer Interface

The archival layer of OceanStorés in chage of encod-
ing anddisseminatingndividual blocks of objects,and
storingthe mappingsrom objectGUIDs to mostrecent
versionGUIDs. The interfacefor thesemechanismss
straightforvard:

disseminate(block) = GUID

The disseminateoperationtakes a block, erasureen-
codesit, disseminateshe resulting fragments,and re-
turnsthe GUID generatedor the block from the blocks
dataand fragments. This routineis called by the soft-
warelayerimmediatelyabove the archival layer, which
handlesplacingthe GUIDs of new childrenin their par

entblocks,andthencalling disseminate() for those
parrents.
retrieve(block GUID) = block, frag-

ment hash

When a client desiresa block which is storedin the
archie, it callstheretrieve() routine,whichlocates
theblock’s fragmentswith its GUID, retrievesthem,and
reconstructsheblock. It returnsthe block’s dataaswell

asthe top-mosthashin the fragments’verificationtree
(recall thatthis hash,concatenatedvith the hashof the
block’'s data,will hashto theblock’s GUID).

disseminateTombstone(object GUID, ver-
sion GUID, owner key, primrary ring
key certificate, primary ring key)

When a primary ring (or ary other authorizedclient)
wishesto generatea new objectGUID - versionGUID
mapping, it calls this routine to createthe tombstones
and disseminatehem, replacingary tombstonesvhich
currentlyexist for the object.

retrieveTombstone(object
sion GUID

GUID) = ver-

Thisroutinewill retrieve anobjectstombstonesndwill
returntheversionGUID they indicateasthe mostrecent
versionGUID.

4.2 StorageSelwver Interface

Theitemswhichthearchive mustdisseminatestore,and
retrieve are thus erasure-encodeftagmentsand tomb-
stones.Thetwo importantqualitiessharedby thesetwo
typesof datais that both are self-verifiable, and both
aredurableagainsfailure by makinguseof redundany.
Eachcanberepresentedsasequencef bytes,whichin
turn canbe storedby any moderncomputer For the re-
mainderof this section,'fragment”will referto ary item
which canbe storedby the archival storageseners. The
interfaceof a storagesenerin the OceanStorarchieis
asstraightforvardastheinterfacefor thearchve:

store(GUID, fragment,
success or failure

certificate) =

Whena seneris asledto storea fragment,it placesthe
fragmenton permanenstoragesothatit canberetrieved
usingits GUID. If the fragmentis alreadyon the sener,
store returnsfailure. The certificatecontainsinforma-
tion pertainingto the owner’s identity andbilling infor-
mation. It shouldsecurelyidentify the party requesting
storagefor thefragment.

contains(GUID) = success or failure

A senercanquerywhetheror notit hasa fragment.

retrieve(GUID) = fragment or failure

A sener indexes its storagemedium using the input
GUID, andit returnsthe fragmentnamedby that GUID,
or failureif thefragmentcould not be found.

delete(GUID,
or failure

certificate) = success

A sener may also be requestedo remove a fragment.
The fragmentis locatedby its GUID, andthe sener re-
turnseithersuccesr failure. Note that the requesting
party mustincludea certificateenablinghim to perform
the deletion. Sucha certificatecould simply be anonce
signedby the owneror responsiblgarty key.

With this simpleinterface,mary possibleimplemen-
tationscan exist. A naie implementationstoreseach
fragmentin aseparatdile, andnameshefiles according
to the fragments’GUIDs. All operationsof the storage
sener arethusreducedto file systemoperations. This
implementationignoresa critical featureof the datain
the OceanStorarchive: fragmentsandtombstonesre
small For example,a4K block erasure-encodedto 32
fragmentswith a rate 1/2 codewill producefragments
of size 404 bytes. This numberincludesthe fragment
data, the fragments verificationinformation, and addi-
tional overheadsuchasthefragments GUID andits type

andrateof encoding.Thetotal sizeof afragmentis cal-
culatedasfollows:

fragmentdatasize= 4096 bytes
g 16 messagéragment
bytes
=2 2
56 messagéragment)
hashoverhead= 2O_bytesx 5=
hash
bytes
fragment @)

additionaloverhead= 28bytes (4)
total fragmentsize= 256 + 100 + 28 = 400bytes (5)

Tombstoneare even smaller at approximately200
bytesa piece. Thesesmall sizesarenot well supported
in our naive schemebecaus@achfragmentwill take up
anentireblock on disk (4K). A moreintelligentscheme
assignsnultiple fragmentgo asinglefile, andmaintains
a mappingfrom GUIDs to storagefiles. Otherimple-
mentationsare possible,including databases.Because
disseminatiorof fragmentswill berandom thereshould
be no correlationbetweenfragmentson a single node.
Additionally, the fragmentsfor a block should not be
accesseaften, sincewe expect OceanStordo intelli-
gently cacheactive documents.Thesefactsseemto in-
dicatethatthereis no goodway avoid goingto disk on
every fragmentretrieval. Recallfrom Section2.2 that
disk bandwidthtodayis approximately?25 Mbps, andin
twentyyearswill be2.5Gbps.Thenumberof fragments
storedon a device will thereforebe determinednot by
thedevice’s capacity but by the bandwidthdemandeaf
thearchive by its users.

5 Tapestry

Fragmentstoredin the OceanStorarchial layerareal-
lowed to resideon ary sener. This propertygivesthe
archival systemthe ability to spreadfragmentsfor an
objectacrossthe world (increasingthe object’s durabil-
ity), andit makesthe taskof remaoving old senersfrom
and addingnew senersto the OceanStorenuch sim-
pler. To routeto fragmentswith this propertyrequires
a sophisticatedouting and location layer OceanStore
thereforemakesuseof Tapestry22], anoverlaynetwork
basedon the hashed-suix routing structureby Plaxton,
et.al.[18].

Recallthatall fragmentsfor a givenblock arenamed
by the sameGUID. EachGUID mapsdeterministically
to a singlenodein Tapestrywhosenodeidentifier most
closelymatcheghe GUID. Thisnodeis referredto asthe

s \
\ * Root

B
Fragment

7

Fragment

\

B
@ :
@U/@\\@

Client

Figure8: A singlelocationtreein Tapestry Thethree
fragmentspublish themseles to their block’s root by
sendingmessage® nodesvhoseid suffixesareincreas-
ingly similarto thatof theblock GUID. A clientrequest-
ing the fragmentgoutesits requesto theroot, asshavn
by thethick line initiating atthe Client.

objectsroot node.Whena fragmentis storedon a stor
agesener, it adwertisesitself throughTapestryby rout-
ing amessagéo thisrootnode.At eachhopin Tapestry
thismessageéepositapointercontainingthefragments
GUID andtheGUID of thenodestoringit. As adwertise-
mentmessagesor differentfragmentscorverge to the
root, intermediatenodescontainincreasingnumbersof
pointersfor the object's GUID. Figure5 illustratesthree
fragmentsfor a block locatedin a Tapestrytree,anda
clientsendingarequesfor thethreefragmentsTheroot,
onreceving theclient'srequestwill forwardtherequest
to the threenodescontainingthe fragments(which are
themselesthe roots of their own GUIDs’ trees). Each
of thesestoragenodeswill thensendtheir fragmentto
theclient, whichis alsotheroot of its own GUID’s tree.
Figure5 summarizeshenumberof nodesgperhopand
numberof fragmentsper nodefor Tapestrygivena net-
work with 10° nodes,a branchingfactor of 16, and a
singleobjectwith 32 fragments.As the tableindicates,
therewill beonly 8 hopshetweerafragmentandits root,
but to retrieve 16 fragments a requestmusttraverseall
thewayto anobjectsroot. Becausegherootis socritical
to locationin thearchive,multiple locationtreesareused
for eachobject. Additional detailsof multiple locations
treesandroutingin Tapestrycanbefoundin [22].

6 Fault Detectionand Repair

This sectionwill surnwey the different types of repair
availableto the OceanStoreystem.Thesdypesof repair

10

hop | pointerspernode | nodesperhop
1 1 6.25e+7

2 1 3.91e+6

3 1 244000

4 1 15300

5 1.013 954

6 1.282 59.6

7 10.67 3.73

8 32 0.233

Figure9: Thenumberof expectedhodesat eachhopin a
Tapestnjocationtree,andthenumberof expectedooint-
erspernodeat eachhop, givena network of 10° nodes,
a branchingfactorof 16 in Tapestryandan objectwith

32fragments.

includethe local repair of fragmentsby their own stor

ageseners,Tapestrysdetectiorof senerfailure,andthe
distributedfault detectionandrepair of individual frag-

ments. We closethe sectionwith ananalysisof simula-
tionsrun againstour distributedfragmentfault detection
andrepairscheme.

6.1 Local Repair

One problemin secondaryand tertiary storagestudied
todayis that of mediafailure. Tapecanrot, andblocks
cango badon disks. Error correctingcodesand other
forms of redundang are often usedto prevent these
kinds of failuresfrom damagingthe bits that are being
stored. OceanStorarchival storagesenershave avail-
ableto themredundang so long asthey are connected
to the wide area. A sener canslowly sweepthrough
the datait storesusingits fragments’cryptographically
self-verifying natureaschecksumso ensurehatthedata
hasbeenpreseredcorrectly If anerroris detectedthe
sener— asa client of the OceanStore— needonly re-
questthe failed fragments block from the archive, re-
constructthe block, andthenfragmentit to recreatethe
lost fragment. We do not expect storagemediato fail
frequently sothis sweepcanbe doneover a fairly long
periodof time. In twentyyears,accordingto Figure2.2,
a disk will storeonePetabyteof dataandhave a band-
width of 2.5Gbps.Usingall of the disk’s bandwidth,a
sweepcanbe completedn no fewerthan37 days This
numberis unacceptable As mentionedin Section2.2,
the amountof dataon a disk will be determinedby the
disk’s bandwidth,andnot its capacity By replacinga 1
PB diskwith 10010 TB disks,thelocal sweepperiodof
37 dayscanbemaintainedput will useonly onepercent
of thedisks’ bandwidth.

sener | fragment| MAC key
component heartbeat| heartbeat update
fragmentGUID 0 20 0
senerGUID 20 20 20
timestamp 8 8 8
signature 20 20 20
public key 0 0 128
Total 48 68 176

Figurel10: Breakdavn of Tapestrypointerheartbeaton-
tentsandMA C updatesAll sizesareexpressedn bytes.

6.2 Tapestry Pointer Repair

Beforewe discussthe repairof fragmentswe mustad-
dressthe self-repairof the Tapestry The pointersin

Tapestrymustbe keptup to date,andmustbe keptcon-
sistent(thoughbrief periodsof incosistenyg aretolerable
dueto Tapestrys fault-tolerantnature). For the analysis
of this section,we will assumea network with 6 x 10°

usersponemachineperuser and10 GB of dataperuser

Datais broken up into 4KB blocks, eachof which are
encodednto 32 fragments.

6.2.1 Default Tapestry Pointer Update

Themechanisnfor Tapestryself-repairendorsedn [22]
is a fragmentheartbeat.We extendthat schemein this
work to preventmalicioususersfrom issuingheartbeats
for senersthatthey do notown. Securitycanbeattained
by including with eachheartbeatt MAC of its contents
andthe MAC key. This schemeequiresthateachsener
storea MAC key for eachother sener with whom it
communicates. The size of a MAC key is 20 bytes,
andthe numberof MAC keys which mustbe storedon
eachTapestrynodeis at mostthe numberof pointersper
Tapestrynode; this implies a storageoverheadof less
than50%. If a machinerecevesa heartbeafor which
it hasno MAC, it caneasilyrequesthe MAC key from
the sender The MAC updatemessagdrom the sender
includesthe senders public key, which canbe verified
becausa Tapestrynodes GUID is ahashoverits public
key. We assumehatrequestfor MAC keys occurvery
infrequentlyrelative to the numberof messagesent.
The contentsof a fragmentheartbeatire enumerated
in Figure10. Onceaday, anobjectresidingonaTapestry
nodewill issuea heartbeatip eachof its locationtrees.
Thisheartbeaincludesthe GUID of theobjectaswell as
theGUID of thesener. In thisway, thelocationinforma-
tion in Tapestryis presered throughsoft-state.For the
OceanStorarchive, however, this schemds infeasible.
Considerthe total numberof fragmentdn our example:

11

bytes

person

N 1 block>< fragments
4096 bytes block

= 5.033 x 10'"fragments (6)

6 x 10°peoplex 10 x 10243

With onenodeperpersonin theworld, therewill be

5.033 x 10'7 _ 830 % 107fragments

6 x 109 node (7)

Now considerthat each node will also sene as a
tapestryroot for fragments. By symmetry this means
that eachnodewill store,as a root node, 83.9 million
pointers.But Tapestryusesredundantocationtrees(let
us assumdive), sothereareactuallyfive rootsfor each
fragment.Our network sizewill produceTapestryloca-
tion treesof height8, andeachnodewill sene atdiffer-
entheightsin differentlocationtrees— a particulamode
will appeamsoftentwo hopsaway from fragmentsasit
will eighthopsaway. Sowe endup with

fragments>< trees
node fragmentode
ointernodes ointers
POINIETNOTES_ 3 36 x 1002
tree node

8.39 x 107

(8)

Eachpointeris 40 byteslarge (20 bytesof SHA1 hash
for the object GUID and 20 bytesfor the storagenode
GUID). Thus, eachsener stores— and musthave pe-
riodically updated— 134 GB in pointers. With MAC
keys, this numberincreasego 201 GB. 2 In the default
Tapestryschemegachof the pointersresidingon a ma-
chinewill berefreshedaily. Thiswill resultin

1day fragments
7 —
8.39 X 107 x 86,400seconds second ©
and
1day pointers
9 —_—
3.36 x 107 86,400seconds 38,900 second (10)

being processediy eachnode. The bandwidthre-
quiredby eachnodeis therefore

. . 17
2This numberis actually larger than the %"— x 400 =

3.36 x 1010 bytesstoredon eachnodefor fragments. This particu-
lar resultis expected sinceto provide high durability and availability
of distributedinformation,we mustnecessarilyuseredundang of in-
formation.

heartbeats bits
38,900 second - °**heartbeat
of bandwidth. If we assumel00Mbpslinks to each
nodein the system(optimistic, but notunreasonabldpr
today), thenthis is twenty percentof the available net-
work bandwidth. The requiredCPUtime is determined
by the speedof the MACs. EachMAC canbe prodcued
and verified by hashingover the messageontents,and
thenhashingovertheconcatenationf thathashwith the
MAC key. Thus,two hashesareused. The speedof the
SHA-1 hashwasmeasuredn [19] as.016 mson a 266
MHz machine.If we extraploateto a1 GHz speedthis
numberbecomes00426 ms. Thus,a MAC takes.00852
msto produceandto verify. Usingthis number there-
quiredCPUtimein this schemdor cryptographyis

21.2Mbps (11)

MAC MAC
nodesecond secon

ms

ms
12
second (12)

This numberis over 30% of the available CPU time.
We candevelopamoreefficientupdatescheme.

(3.89 x 10*

=340

6.2.2 Sewer HeartBeats

We cansignificantlyimprove uponthedefaultschemdoy
only updatingsenerroutingtables.In the Tapestryeach
nodehasaneighbortableof sizeb xlog, N. With b = 16
andN = 2169 thisis 640 neighborspernode.If asener
periodically republishedtself to eachof its neighboars
onceanhour, thetotal bandwidthrequiredwill be

bits 1minute

X
heartbeat 60seconds
= 4.096Kbps (13)

andthetotal requiredCPUtime will be

heartbeats
— X
nodeminute

ms 4
MAC minute

ms
x 00852 MAC minute)

1minute

x —
60seconds
ms
nd

seco
For securesenerheartbeatsccuringonceperminute,
then, our total resourceusagefor network bandwidthis
4.096Kbps/100Mbps = .004% and our total resource
useof CPUtimeis .009%.

(.00852

nodes

640 ———
node

(14)

12

6.2.3 Notification HeartBeats

When a given node goesdown, there are 640 nodes
whichwill quickly notice. Othernodeswhich arepoint-

ing to critical dataon thatnodecanleveragetheseother
nodesfor notification Critical datamay include active

objects(primary rings or cachedcopies),or fragmented
objectsfor which thereareonly a few fragmentdeft (so

the objects’ rootswant to know as quickly as possible
whenanotherfragmentis lost). A simulationsimilar to

thatdiscussedn Section ?? revealedthatusinga repair
schemen 32 one-halfratefragmentswith heartbeatsc-

curring once a month, and with repair occuring either
immediatelyafter the loss of 8 fragments,or oneweek
afterthelossof 4 fragmentsthatthetotal numberof lost

fragmentsvasonly lessthan8 lessthan1% of thetime.

Thus,the proportionof objectsin the archive which are
critical (underthisscheme)s 1 in 100.

We thereforeproposethat, for critical objects, root
nodesn Tapestryrequeshotification.If SenerA wishes
to be notified whenan objecton Sener B is lost dueto
senerfailure,it canregisterwith anumberof B’s neigh-
bors(let's say5). This is donedeterministicallyin the
following manner:

1. A sendsa notification requestto Sener B. It can
repeatthis requestseveraltimes,andif B doesnot
sendaresponseA knowsthatB is alreadydown.

. B usesA’ssener GUID asaseedo arandomnum-
bergeneratomwhich producedive randomnumbers
betweenl and640. Thefirst randomnumberdeter
minesto which neighborout of B’s 640 neighbors
thenotificationrequesimessagés sent.

. B routesA’s notification requestto eachselected
neighbor

. Whenthe notificationrequesis receved by Sener
C, it storesA’s GUID alongwith B's GUID asan
interestedparty

If Sener B fails, Sener C will detectthis failure be-
causeit will not have receved B's sener heartbeats|t
will thensenda messageo Sener A informingit of B’s
failure.

This schemassuesa heartbeatontainingtwo GUIDs
(onefor the senerto bewatched andonefor the sener
to benotified). Thesearethe samesizeasthe heartbeats
in Section6.2.1. Only oneout of every forty fragments
will requireone of theseheartbeatgwhich are actually
issuedfrom the Tapestryroots), but five of theseheart-
beatsawill occurperfragment.Heartbeatsravel from the
sener wanting notificationto the sener to be watched,

atrip which on averageshouldtake 4 hops(half the dis-
tanceup the locationtree until a pointerto the watched
nodeis found). Oneadditionalhop is thenrequiredto
routethe notificationmessagéo a neighbomode.

If welet notificationheartbeatsccuronceperday; the
bandwidthrequiredis

fragments>< 5rootnodes
nodeday fragment
notifiers 1hop
X 7
rootnode notifier
w54a20S o 1day
hop 86,400seconds
= 238Kbpspernode

1
— x 8. 107
100><839x 0

x (4

hops
rootnode

)

(15)

TheCPUis usedto MAC anotificationheartbeatand
to verify thatheartbeafive times. The numberof notifi-
cationheartbeatsvhich mustbe sentout by an average
nodeperseconds then

1 , fragments
100 > 8.39 x 10 Todeday
(1 MAC notifiers MAC)
fragment node notifier
ms lday
x.00852 MAC * 86, 400seconds
ms
= — 16
second (16)

The resourceuse of this schemefor network band-
width andfor CPUis therefore 24% and.050%, respec-
tively.

6.3 Distrib uted Repair for Fragments

We have seenthat senersare capableof repairingtheir
own fragments andwe have seenthat, for critical doc-
uments,Tapestrycanusea combinationof sener heart-
beatsand notificationto quickly detectadditionalfail-
ures. Eachof theseschemeswhile beneficial,is insuf-
ficienttoward maintaininga distributedobjectfor along
period of time. The OceanStorarchive requiresa dis-
tributedfragmentrepair scheme

There are four basic types of distributed repair
schemedor fragments:

Untrusted passie detection A fragment periodically
sendsa heartbea{seeSection6.2 for details)to an
untrustedparty or partiesin the network. If one
of thesepartiesdoesnot receve a heartbeatftera
numberof heartbeaperiods,it marksthe fragment
asinactve.

13

Untrusted active detection An untrustedparty in the
infrastructure can also periodically sweep frag-
ment(s) by requestingthem from their storage
sener(s). Whenit receves a fragment,it checks
its integrity. If a sener fails to senda correctfrag-
mentafteranumberof sweepperiodstheuntrusted
party marksthe fragmentasinactive.

Trusted passie detection Fragmentgperiodicallysend
heartbeatdo a party in the network whom object
owners entrustwith the integrity (though not the
contents)of their data. Again, after a numberof
missedheartbeatshis party marksthe fragmentas
inactive.

Trusted active detection Thetrustedparty periodically
requestall of the fragmentsandverifiesthem. If a
fragmentfails to appearafter a numberof sweeps,
thepartymarksit asinactive.

In this categorization trust refersto whetheror notthe
partyin questionwill behave correctly100% of thetime.
Untrustedpartiesmay undego Byzantinefailures. Pas-
siverefersto fault detectingalgorithmsin which the de-
tectingparty noticesa fault only whena fragmentstops
adwertisingitself. Finally, activerefersto the detecting
party verifying that a storagesener not only claimsto
have afragmentbut thatit canactuallyproducehefrag-
mentcorrectly upon request. Notice that eachform of
detectiorrelieson anumberof failuresto occurbeforea
faultis declared.This numberis tunable andin thecase
whereit is setto one,thedetectingpartycanmaintainno
fault detectionstatebetweerepochs.

OceanStordasthe notion of a responsiblegparty, an
entity that is trustedwith the integrity of its clients’
data.This partycanperformpassie detectionrandactive
sweepf its clients’ fragments.Many responsiblepar
ties may exist in the OceanStorethoughtherewill cer
tainly be far lessof themthanusersor storageseners.
Becauset is centralized,we wish to limit the amount
of work performedby and statestoredat the responsi-
ble party. While the designandnatureof theresponsible
party are beyond the scopeof this paper we discussa
possiblesolutionto its scalabilityproblemin Section8.

OceanStoralsoassumes network thatis composed
almostentirely of untrustedpnline senersthatcanper
form fault detection.In particular the Tapestrynodesin
the locationtreesfor a fragmentedobjectalreadyhave
pointersto the objects fragments,so they are ideally
suitedfor the taskof fault detection.Tapestryoffersan-
other benefitfor fault detection,in thatit providesfor
locality of detection;nodeswhich arelow in anobject’s
locationtree are very closeto its fragmentsrelative to
nodeswhich are high in the tree. Theseseners can

thereforeperformfault detectiormoreoftenthanseners
which arefartherup the tree. We still want nodesvery
high in the treeto do fault detectionoccassionallybe-
causein this mannemwe caninsulatethe systemagainst
regionaloutagesA nodein the Tapestryperformsheart-
beatchecksand sweepsin periodswhich grow expo-
nentially with the nodes distancefrom the fragment(s)
whichit is testing.Usinganexponentiatiorfactorof 1.5,
if anodeonehopaway expectsaheartbeabnceamonth,
anodetwo hopsawaywould expectaheartbeaévery1.5
months anodethreehopsawaywould expectaheartbeat
every 2.25 months,andtheroot (8 hopsaway) would ex-
pecta heartbeatvery 17.09 months. Of course,nodes
low in the locationtreesprogagateadetectedfailuresup
thetreesto theroots,andreportedfaultsareeasyto ver-
ify — anodecanrequest fragmentwhich hasbeende-
claredfaulty 3. In this manney Tapestryroots become
clearinghousedor faultinformation. Becausahereare
fiveroots,thisinformation— while not perfectlyconsis-
tent amongthe roots— is highly reliable by meansof
replication.

Finally, thequestiorof repairmustbeansweredwhen
too mary faults have beendetectedwho recreatesand
redisseminatethe fragmentsn thefaceof billing (dis-
cussedn Sectior8), only theresponsiblgartycanrecre-
atefragmentsandredisseminat¢hemin a secureman-
ner.

Withoutbilling, anyonecansuccessfullyecreatdrag-
ments.In particular the Tapestryrootsarein a position
to know whenreconstructions necessarySynchroniza-
tion amongtherootsis simple. Whena root determines
thatis will performrepair, it sendsamessagéo theother
rootsinformingthemthatit will repairthelostfragments.
It thenwaitsonehourfor aresponsérom eachotherroot
informingit thatthatotherrootwill notperforma paral-
lel repair(which could producetoo mary fragments).In
the eventthattwo or morerootssendthesemessagesi-
multaneouslythe lowestordered* root’'s messagenill
be honored.After aresponséasbeenrecevedfrom all
of the otherroots, or after one hour of having sentthe
messagethe root performsthe repaitr The otherroots
wait oneday afterhaving receivedthe repairnotification
message.If, after this time, no new fragmentsare ad-
vertisedto them,the next-highestroot modulothe num-
berof rootswill performrepait Therootscycle through

3Whena nodehasreportedmary falsefaults,it may be malicious.
A reputationschemecanaid in detecting reporting,andcorrectingfor
ill-behared nodes.Theimplementatiorof suchaschemas beyondthe
scopeof this paper

4In Tapestrymultiple rootsareassignedo a singleobjectby hash-
ing over thatobjects GUID anda smallinteger, in our casel - 5. The
“lowesterorderedrootis thereforetherootthatwasreachedisingthe
smallestnteger

14

therepsonsibilityfor repairin this mannemntil thefrag-
mentsareregenerated By this mechanismexactly one
root will performthe repair (unlessall of the rootsare
corrupt, an unlikely event unlesswe are operatingin a
domaindominatedby maliciousseners).

In the following Sections,we argue in favor of the
above scheme Fragmentsendheartbeatsvith a period
of 1 monthup onehop alongtheir trees,andsendaddi-
tional heartbeatgurther up the tree with periodsexpo-
nentially smallerthan1 month (with exponentialfactor
of 1.5). Additionally, Tapestrynodesperform sweeps
every 2 monthsat hopone,with higherhopsperforming
sweepsxponentiallylessoften (again,with exponential
factorof 1.5).

6.3.1 Analysis of Distrib uted Repair

We mustensurethatthe schemegproposedn the previ-
oussectionwill notoverly tax our network andCPU re-
sourcesWe expecttheresponsiblgartyto performless
work in repairthanthe Tapestrynodesandwe areunsure
of itsimplementationWethereforefocusouranalysison
theloadonthe Tapestrynodes.

First,we analyzetheheartbeaschemeTo useourim-
proved signatureschemegachpointerin Tapestrymust
storethe top hashof the hierarchicalhashof the next 5
signaturessoour storageoverheadncreasedy another
hash— 50% overheadlf we assumenexponentiaffac-
tor of 1.5 in our heartbeaschemethe total numberof
heartbeatsentby eachnodeperseconds

5 heartbeats

fragmentmonth

1month lday 8 1
<Y o =
1.57-1

X 30days x 86,400seconds P
heartbeatsent

4 -
67 second (17)

andthetotalnumbermrecevedby eachnodepersecond
is

fragments
node

8.39 x 107

fragments 5 heartbeats

8.39 x 107 X
node fragmentmonth

1month

lday
X
30days

8 8
. 1
X 8€3,4OOseconds>< ;Z]z:; 1.5i-1

heartbeatseceved
second

Thesetwo numbersindicate that the requiredband-
width pernodeis

3063 (18)

heartbeats bits
467 + 3063m X 1568mt_ 5.54Mbps (19)

andtherequiredCPUtimeis

(467 sentheartbeats recevedheartbea
second second
x X .00852—1>
heartbeat - MACs
ms
=30.1 20
second()

The analysisof sweepsis similar. We analysea
schemen which sweep$apperonly onehalf asoftenas
heartbeathecks MACsarestill usedto verify fragment
requestandthe origins of fragmentssothata nodebe-
tweena storagesener anda sweepingnodecannotpro-
vide a fragmentto the sweepel(thuspreventingit from
detectingafault).

Eachsener will thereforerequestandby symmetry
sene

fragments trees
8.39 x 107 2IMer
nodeperiod ~ fragment
1period 1moonth 1day

><2months>< 30days % 86,400seconds

8
1 f tr t
XZ - ragmentreques
— 1.5~ tree
_ 229fragmentrequests 21)
nodesecond
andeachsenerwill handleon average
fragments trees
8.39 x 107 2IMer
nodeperiod fragment
1period lmoonth>< 1day
2months 30days = 86,400seconds
8 8
) 1 fragmentrequest
8 .ZZ z 1.57-1 tree
i=1 j=i
fragmentrequests
= 1532& (22)
nodesecond

A sener handlesary requestwhich it issuesor that
movesthroughit. The above formulation assumeshat
the numberof hopsfrom a pointerto the nodeto which
it pointsis thesameasthenumberof hopsfrom thenode
to the pointer By symmetry eachsener will have to
handle1532 fragmentsper second. Both requestsand
fragmentsmustbe supplementeavith 8 bytesof times-
tampand 20 bytesof MAC. Thus, the total bandwidth
requiredby eachsenerfor this schemes

fragmentrequests
nodesecond

bytes
fragmentrequest

(1532

15

— 100000 T T T T T T T T
19
©
()
>
o 10000 ¢ E
3
T
LL
o 1000 E
()
E
|_
S 100 g E
()
=
10 1 1 1 1 1 1 1 1

8 10 12 14 16 18 20
Number of fragments

Figure1l: Meantime to failurefor differentnumbersof
fragments.

1532 fragments bytes 1)
nodesecond fragmen
bits
xS% = 6.08Mbpspernode (23)

EachCPUmustproduceor verify four MA Csfor each
fragment(two for therequestandtwo for thefragment),
and must verify eachfragmentit receveson a sweep
(5 hashes).The CPUtime requiredfor cryptographyis
therefore

MACs
frag mentrequest+
MACs
fragmentsser\ed)
fragmentssened
nodesecond

ms
.00426——
% hash

ms
second

fragmentrequests

nodesecond

fragmentssened
nodesecond

(229

229

ms
. 2 22
x.0085 MACS + 229

5 hashes
x -
fragmentssened

=12.7

(24)

This schemeis fairly inexpensve, in thatit requires
only 11.6% of theavailablebandwidthand4.28% of the
availableCPUtime.

6.3.2 Measurementsof Distrib uted Repair

We simulateda global Tapestrywith one billion nodes
in orderto measurehe effectivenesf our schemeWe
only simulateda singleerasure-encodeabject,because
erasureencodedbijectsin the OceanStoravill fail inde-
pendentlyof oneanother We alsoonly simulatedhedis-
tributedrepair scheme- and not sener heartbeatgou-
pled with notification— becausehe simulationwould

16 T T L T T

14 -
13 F

12 - R

11+ I -

10 L .

Mean number ofvavailable fragments

9 n 1 1 1 1 1
0.5 0.6 0.7 0.8 0.9 1

Trust Factor

Figure 12: Numberof availablefragmentsfor different
trustfactors.

not run to completionwith notification (the meantime
to failure would be too great). Each simulation used
the responsiblgparty to coordinaterepair meaningthat
Tapestryroots informed the repsonsibleparty of frag-
mentlosses.We includedmaliciouspartiesin our simu-
lation: a maliciousstoragesener adwertisesa fragment,
but doesnot storeit; a maliciousTapestrynodedoesnot
sweepanddoesnot perform heartbeathecks,but does
propagatefalse heartbeatsup to its root — preventing
ary nodesbetweent andtherootfrom passiely detect-
ing afailure. Our simulationreportedtwo basicmetrics
for our schemenamelymeantime to failureandthe av-
eragenumberof available (surviving) fragments. Each
meantime to failure had an equivalent standarddevia-
tion of time to failure, a resultexpectedbecausef the
memorylessatureof lossyfragmentsandrepait

Unlessotherwisestated,eachsimulationhadthe fol-
lowing parametersi6 fragmentswith rate% encoding)
redundanfTapestrylocationtrees;a Tapestrtreeheight
of 8; a Tapestryheartbeafperiod of one month and a
sweepperiodof onemonth(with exponentiatiorfactors
of 1.5); aresponsibléheartbeaperiodof 2 monthsand
a sweepperiod of 4 months; a failure trigger of 3 for
heartbeathecksandsweepgafragments declaredlead
only after3 consecutie failures);anda repairthreshold
suchthat only after ceiling-one-quarteof the threshold
numberof fragmentdadbeeniostwouldtheresponsible
partyreconstruct.

6.3.3 Numbers of fragments

First, we measuredhe MTTF againstdifferentnumbers
of fragmentsFigurell shovstheresultsonalog graph.
The MTTF grows exponentiallywith thenumberof frag-
ments,but dips after 8 and 16 fragments. This dip oc-
cursbecausafterevery 8 fragmentsthenumberof frag-

16

100000 T T T T

10000

1000

100

Mean Time to Failure (years)

10 I I I I
0.5 0.6 0.7 0.8 0.9 1

Trust Factor

Figurel13: Meantimeto failurefor differenttrustfactors.

ment losseswhich must be detectedbefore repair oc-

cursincreases.In the simulationwith 8 fragmentsthe

responsibleparty would only repair after one fragment
losshadbeendetectedput with 10 fragmentsjt would

wait until two losseshadbeendetected!f we extraploate
this graphwith this trend,anotherdip occursat 24 frag-

ments,and the meantime to failure at 32 fragmentsis

approximatelyl0” years.The meannumberof available
fragmentsin eachsimulationwas consistentlyl.7x the

thresholdnumberof fragmentswith very low standard
deviations.

6.3.4 Trust

An importantfactorin our distributed repair schemeis
thatof trust. If we do not trustthe infrastructureat all,
we cannotrely on it to performfault detection. If, on
the other hand, we trust the infrastructurecompletely
we canrely on it aloneto performfault detection. In-
creasingrustincreasesheaveragenumberof fragments
which areavailableat a particularinstantin time andde-
creaseghe variability in the numberof available frag-
ments,asshavn in Figure12. The meantime to failure
increaseexponentiallywith increasingtrust factors,as
summarizedn Figurel3. Thisresultis interestingn that
it indicatesthat Tapestryfault detectiondominatesthe
fault detectionof theresponsiblgyarty. Figure14 showvs
thepercentagef faultsdetectedy eachhopin Tapestry
andby the Responsibld?arty. Theimportantresulthere
is thatevenfor very low levels of trust, the Responsible
Party detectdessthanonepercentof all faults. This re-
sultis duein partto the reducedfrequeng of heartbeat
checksand sweepsperformedby the responsibleparty,
andin partto the factthateachTapestryhopis actually
five nodeg(to theresponsiblgarty’s singlenode).
Figurel4 alsoindicateghatthevastmajority of faults

100 J—— K /r ™ T T T T 1
32 I RP —— 1
I 10F Hop 1 —]
©
©
1] 1 F =
<)
3
® 0.1} y
© L
= 0.01F]
[
© I
& 0.001F]
0.0001 L

05 06 07 08 09 1 11 1.2 13 14
Trust Factor

Figure14: Percentagef faultsdetectecby the Respon-
sibleParty andby differenthopsin Tapestryasfunctions
of thetrustfactor

100 f T é O @, T A4 N4
3 [o° ratio = rp/tapestry o 1
° 10 o ratio = tapestry/rp e J
[0 [0]]
2 S]
3 1k]
¢ .]
= 01Ff E
e]
5 0.01F N .
= 3 |
§ 0.001 * 2 . .
[0} L o ° ° |
o 0.0001F . .

1e-05L ! L L - ! -

0 1 2 3 4 5 6

Tapestry Hop

Figure15: Percentagef faultsdetectecby the Respon-
sible Party versustheratio betweenits detectionperiod
andthe detectionperiodof Tapestry

were detectedby Tapestrynodesat hop 1. We expect
this result,andit is a powerful algumentin favor of our
localizationof repait Thatotherhopsin Tapestrymust
performperiodicfault detectionstemsfrom the threatof
regional outageswhich we did notincludein our simu-
lations.

6.3.5 Repair Frequency

We further analyzethe role of the responsibleparty in
fault detection. We ran the simulationwith sweepsal-
waysoccurringonly half asoftenasheartbeatsandwe
variedheartbeathecksfor first-hop Tapestrynodesand
the ResponsibleParty from 1 monthto 6 monthsin 1
month increments. Figure 15 shaws the percentagef
the faults detectedby the responsibleparty versushow
oftenit performedsweepsandheartbeathecksrelative

17

to the frequeny of Tapestryfault detections. The top
line of pointsis plotted againstthe RP frequeng over
the Tapestryfrequeng, andthe bottomline of pointsis
plottedagainstthe inverseof this ratio. The resultsindi-
catethatunlessthe responsiblgarty performsheartbeat
checksandsweepsanoreoftenthanTapestrynodesit is
not helpful in fault detection.lt is reasonabléo assume
that therewill be fewer than one responsibleparty for
every fifty Tapestrynodes.Recallingfrom Section6.3.1
that the resourceutilization of Tapestrynodesfor dis-
tributedrepairis 10%, it seemaunlikely thatwe canmake
theresponsiblgparty performfault detectionfasterthan
Tapestrynodes.Therefore the responsiblgarty should
nottake partin fault detection

7 RelatedWork

Work in digital archivesis not nen. Sincethe incep-
tion of computingprogrammersindadministratorhave
beenseekingbetterwaysto presere datafor long peri-
odsof time. This Sectionpresentsa few of the projects
mostinfluentialin today's digital archive research.

7.1 RAID

Oneof thefirst effortstowardsmakingdatamoredurable
without changingthe mediaon which it wasstoredwas
RAID [16] . The mostcommonlyusedform of RAID
is Level 5, in which blocksof dataacrossseveral disks
shareablock of parityinformation,andparity blocksare
distributedamongall of thedisksin thearrayratherthan
onasingleparity disk. While RAID’ s primary goalwas
toimproveuponsingledisk cost-performancehis useof
single-bitparity demonstratetdhat even a smallamount
of redundang in spinning data could dramaticallyin-
creasethat datas expectedlifetime. The meantime to
failure of suchanarraywascalculatedo be anorderof
magnitudegreaterthandatastoredon a singledisk.

7.2 Digital Libraries

Researctin the areaof digital librariesis now several
yearsold. This field aimsto take corventionalinforma-
tion — like books,pictures,or video— and storeit in
aneasily-usedstrongly-durabldormat. Digital libraries
attemptto addresshearchival goalsof durability andus-
ability. Thesesystemsstriveto provide easy-to-us@nter-
facedo vastamountf data,notonly for easeof reading
andsearchingbut alsofor easyannotatiorof documents.
Oneprojectcurrentlyimplementingadigital library is
RobertWilensky's Digital Library Projectat UC Berke-
ley [20]. Wilensky’'s group usesa testbedcalled the

“California EnvironmentalDigital InformationSystem”,
an online repositoryof variousdocumentsertainingto
ervironmentalinformation. This systemstoresits data
on information seners which are implementedusing a
databasenanagemensystem. In this way; it leverages
existing technologiedor datastoragejndexing, andre-
trieval. A usercanenteralegag/ documentnto this dig-
ital library by scanningt into a computerandfilling in
metadataboutthe documen{suchasauthorandtitle).

Userscansearchor informationusinganapplication
implementedy Wilensky’s team,or they canusea new
extensionto UC’s Digital Library calledCheshirdl [12]

Cheshirell providesa naturallanguagesearchon a
vast databaseof documentsandis capableof conven-
tional Booleanresultsto searcheaswell asprobabilistic
matchego queries.Cheshirdl movesthe processingf
gueriesto thesenersstoringtheinformation,sothatthe
clientmustonly processhepositiveresultsof its queries.

UC’sDigital Library Projectalsomakesuseof “multi-
valentdocuments'to [21] enableusersto annotatedoc-
umentswith their own personalcomments.One of the
prime goalsof this extensionis to supportdocumenfor-
mats and documentmanipulationswhich have not yet
beendeveloped.

7.3

A projectvery similarin spirit to digital library projects
is the InternetArchive project[1] , begunin 1996in or-
derto permanentharchie digital informationof histor
ical interest. The archival goalsof the InternetArchive
are durability and usability The InternetArchive per
sonnelnote that much of the Internet(aswell asother
new forms of medialike radio andtelevision) is going
largely unarchied; once a web site dies, the informa-
tion onit is goneforever. They arealsoconsideringthe
deprecatiorof dataformats,andarecollectingemulators
for dataformatsso that the informationthey storewill
beusablein thefuture. Currently the Archive boastst3
Terabytesof saved data. Unfortunately it is not highly
available. To usethe archive, onemustfill outandsub-
mit aproposal Additionally, the Archive’suseramustbe
proficientin Unix programming.The Archive’s mecha-
nismsfor durability arecorventional;datais storedon a
seriesof Linux box harddrivesandtapes.

Inter net Ar chive

7.4

A work currently in progresswhich closely resembles
the OceanStordrchive is Intermemory[9]. Concerned
primarily with the archival goal of durability, this work
introducedhedistribution of erasure-encodddagments
into the wide areaas an ideal mechanisnfor archival

Intermemory

18

storagelt is a subscribetbasedpeerto-peerstoragen-

frastructure. A userof an Intermemorydonatesfor a
small amountof time an amountof storagefor useby

othermembersandin exchangerecevesa smallerbut

more permanenamountof storagein the Intermemory
for his own personaluse. For example,Bob could pro-

vide oneGigabyteof his own disk spaceo anintermem-
ory for oneyear;in exchangehewouldrecevetwo hun-
dredMegabytesof spacdn thatIntermemoryfor therest
of its existence.

By breakingobjectsup into 32 or even 1024 frag-
ments, Intermemoryusesthe law of large numbersto
help ensurehelong-termdurability of the datait stores.
Becausdntermemorydealsin suchlarge durabilities, it
useslevels of indirectionin its locationschemeso that
a singlevirtual Intermemoryaddresscanbe usedto re-
trieve all of an objects fragmentseven after all of the
original storagesenersarelong dead.

Intermemorys repair mechanisnreplacesdeadstor
agesenerswith freshinteremorydaemong5]. Thefault
detectionin Intermemoryis at a sener granularity;each
sener hasthirty-two “neighbors”,eachof which poll the
senerto determingf it is still alive. If it failsto respond
aftertoo long a period,the systemwill replaceit with a
new node.In thisway, a particularsener’'sarchiveddata
is asrobustasthatsener’s thirty-two neighborgqthatis,
its archived information survivesso long as one-halfof
its neighboarssurvive). Additionally, by reconstructing
a logical fragmenton a nev machineusing Intermem-
ory’s protocols,the systemsolvesthe mediacornversion
problem (so long as the information was corvertedto
Intermemorys encodingformat whenit was originally
archived). Unfortunately this schemeplacesthe burden
of fault-detectioronto the client, which may be infeasi-
ble for thoseclientswith intermettitenr low-bandwidth
connections. The authorsof Intermemaoryalso briefly
mentionwhatthey call archival semanticsmeaningthat
theformatof anarchived objectmay eventuallybecome
unsupportedmaking the documentunreadable. They
recommendthe use of emulatorsto make such docu-
mentsusableaslong asthey aredurable.

7.5 PAST and FarSite

PersisterandAnonymousStoragdn a Peerto-PeelNet-

working Ernvironment (PAST) [7] is a project strongly
similar to OceanStoreTheir archial goalsaredurabil-
ity, availability, and,becauséhey supportstorageon the
untrustedvide areasecurity They seekto achievethese
goalsby replicatingfiles storedin PAST on several ma-
chinesJocatableby their overlay-netvork routing layer,

Pastry®. No repairschemehasyet beendescribedor
documentsstoredin PAST, implying that their current
durabilityis comparabléo thatof today's disk drives(an
approximateMTTF of five years).

Anotherprojectout of Microsoft Researchs FarSite
[4]. FarSiteis similarto PAST in thatit ensuredile dura-
bility throughreplication. Unlike PAST, FarSiteis not
intendedo scaleglobally, but securityis still oneof Far-
Site’s goals, sincethey assumehe presenceof incom-
pletely trustedclients. While FarSitedoesnot describe
a fault-detectioror repairschemethey do focuson the
availability metricsof their system. In particular they
obsene that a documentin FarSiteis highly available
becausall of the machinesstoringit mustbe down for
it to beinaccessible.

8 Future Work

Two key aspectof the OceanStoravhich are strongly
relatedto repair still requirediscussion. First, thereis
the problemof billing. OceanStorés intendedto be a
storageutility. Therefore,storageseners mustbe able
to chage usersfor the datathey store. The responsible
partyis ideally suitedto this task,becauet is financially
chagedwith thesurvival of its clientsdata. Thus,storage
senerschagefragments'responsiblgarties,andthere-
fore fragmentamustcarrywith themthe GUIDs of their
responsibleparties. A security problemis also tightly
relatedto both billing and repait A malicious sener
could potentially storeall of an object’s fragments,ad-
vertisethemto Tapestry and producethemwhenasled
by a sweep. This sener would thus prevent Tapestry
andtheresponsiblgartyfrom detectingary failing frag-
ment. Presumablyonceenoughof the fragmentson the
legitimatestoragesenershaddied, the malicioussener
would stopstoringthe fragments effectively killing the
document.

A solution to both of these problemsmust use a
methodof authenticatingstorageseners. Thatis, there
mustbe a key whichtheresponsiblgarty storesin addi-
tion to the GUID of anerasure-encodeabject,andthis
key mustvalidatethe GUID of arny sener claiming to
storea fragment. A sener billing the responsibleparty
for afragmentincludesin the bill the fragments GUID
andadditionalinformationwhichwill producethebilling
key for thefragment.Onesimpleway to producesucha
key is to usea hierarchicahashoverthestorageseners’
GUIDs; eachsenerwould includein its bill thesibling

SFor athoroughdescriptionof themechanismandalgorithmsused
in Pastry seehttp://wwwcs.berkley.edu/ravenben/publication€/SD-
01-1141.pdf

19

hashesecessaryo hashfrom its sener GUID to theob-
ject’s key. Whenever repairoccurs this key mustbe up-
datedto reflectthesener GUIDs of new storageseners.
The key canalso be usedby Tapestrynodesto verify
thata particularseneris alegitimatestoragesenerfor a
fragment.

9 Conclusion

Thereis agrowing demandor distributeddataarchves.
OceansStoreseeksto meet most of the applicationde-
mandsfor preservingthe bits, and leaves the prob-
lem of archival semanticsto application developers.
OceanStorensureghe integrity of its databy meansof
cryptograhpicashesandit provideshigh durabilityand
availability of its datausingerasurecodes. Essentiato
theuseof erasurecodeds the presencef fault detection
andrepair We have seerthat,usingTapestrythesystem
can efficiently detectthe failuresof fragmentsthrough
pointerheartbeatandby periodicallysweepinghedata.
We have alsoseenthat it is unnecessaryo usethe re-
sponsiblepartiesin OceanStordor fault detection.The
durability and availability of objectsin the distributed
repairschemesgpresentedn this work are sufficient for
maintainingdocumentgor thousand®f years.

References

(1]
(2]

Internetarchive. http://www.archive.og/xterabytes.htm.

Summaryon linear vs. helical recordingtechnologiesn
entry-level to mid-rangetapebackupproducts.1998.

ANDERSON, T., CULLER, D., AND PATTERSON, D. A
casefor now (networks of workstations);1995.

BoLoskY, W., DOUCEUR, J., ELY, D., AND THEIMER,
M. Feasibilityof a senerlessdistributedfile systemde-
ployed on an existing setof desktopPCs. In Proc. of
Sigmetric{June2000).

CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A.,

SOBTI, S., AND Y IANILOS, P. Prototypeémplementation
of archival intermemory In Proc. of IEEE ICDE (Feh

1996),pp. 485-495.

CHERVENAK, A. L. Tertiary storage:An evaluationof
new applications1994.

DRUSCHEL, P., AND ROWSTRON, A. PAST: A persis-
tentandanorymousstore. http://www.research.
microsoft.com/ antr/PAST/ , February2001.

GILDER, G. Fiberkeepsits promise: Get ready band-
width will triple eachyearfor the next 25. Forbes(Apr.
1997).

GOLDBERG, A., AND YIANILOS, P. Towardsanarchial

intermemoryIn Proc.of IEEEADL (Apr. 1998),pp.147—
156.

(3]
[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

GRAY, J., AND SHENOY, P. Rulesof thumbin dataengi-
neering.Tech.Rep.MS-TR-99-100Microsoft Research,
Mar. 2000.

KuBlATOWICZ, J., ET AL. OceanstoreAn architecture
for global-scalepersistenistorage. In Proc. of ASPLOS
(Nov. 2000),ACM.

LARSON, R., AND CARSON, C. Informationaccessor a
digital library: Cheshirai andtheberkeley ervironmental
digital library. In Proceedingf the 62nd ASISAnnual
Meeting(Nov. 1999).

LuUBY, M., MITZENMACHER, M., SHOKROLLAHI, M.,
SPIELMAN, D., AND STEMANN, V. Analysisof low den-
sity codesand improved designsusingirregular graphs.
In Proc.of ACM STOC (May 1998).

NIST. FIPS186digital signaturestandard May 1994.

PATTERSON, D., GIBSON, G., AND KATZ, R. A casgfor
redundantrraysof inexpensve disks(raid).In Proceed-
ingsof 1988ACM SIGMODInternationalConfeenceon
Managementof Data (1988).

PATTERSON, D. A., AND HENNESSY, J. L. Computer
Architectue: A Quantitative Appoac. Forthcoming
Edition.

PLANK, J. A tutorial on reed-solomortodingfor fault-
tolerancein RAID-lik e systems. Softwae Practice and
Experience27, 9 (Sept.1997),995-1012.

PLAXTON, C., RAJARAMAN, R., AND RICHA, A. Ac-
cessinghearbycopiesof replicatedbbjectsn adistributed
ervironment.In Proc.of ACM SFAA (Junel997).

RoE, M. Performancef protocols. In Proceedingsof
SecurityProtocolsWorkshop(1999).

WILENSKY, R. Toward work-centeredligital informa-
tion services. IEEE ComputerSpeciallssueon Digital
Libraries(May 1996).

WILENSKY, R. Digital libraries resourcesas basisfor
collaboratve work. Journal of the AmericanSocietyfor
Information(Feh 2000).

ZHAO, B. Y., KuBiAaTOowiICZ, J., AND JOSEPH, A. D.
Tapestry: An infrastructure for fault-tolerant wide-
arealocation and routing. Submittedfor publication
to SIGCOMM, http://www.cs.berkeley.edu/
“ravenben/tapestry.pdf ,2001.

20

