
Hash History:
A Method for Reconciling Mutual

Inconsistency in Optimistic
Replication

Brent ByungHoon Kang,
Robert Wilensky and John Kubiatowicz

CS Division, UC Berkeley

Background

Optimistic Replication
Allow mutable replica to be inconsistent temporarily

in a controlled way
for high availability and performance

Tentative update support in OceanStore
Bayou, USENET, and Peer-to-Peer File System (e.g.,
Ivy, Pangaea, etc.)

Need Mechanism for
Figuring out the ordering among updates
Extracting deltas to be exchanged during
reconciliation

Previous Approaches:
Version Vectors

Widely used in reconciling replicas
In most weakly consistent replication systems
Bayou, Ficus, Coda, Ivy, Pangaea … etc.

Complexity of management grows
As new replica site added or deleted
Need to assign unique id dynamically for newly
added replica sites

Doesn’t scale as number of replica site increases
Version vector needs one entry for each replica site
Size of vector grows in proportion to number of
replica sites

Site A Site B Site C

V0,A

V1,A V2,B

001
CBA

012
CBA

010
CBA

d3
d2

d1

V4,A

m4

V5,C

m5

000
CBA

V3,C

100
CBA

212
CBA

counter

site_id

Site A

New
Site D

012
CBA

010
CBA

012
CBA

O1:
O1:

0
D

0
D

0
D

O1:

O1:

212
CBA

0
D

Site CSite B

Our Proposal: Hash History

Each site keeps a record of the hash of each
version

Capture dependency among versions as a directed
graph of version hashes (i.e., hash history)

The sites exchange the hash history in
reconciling replicas
The most recent common ancestral version can
be found, if no version dominates

Useful hints in a subsequent diffing/merging

Site A Site B Site C
V0,A

V1,A

d3d2
d1

H0,A

V2,B V3,C

Hi,site = hash (Vi ,site)

Site A Site B Site C
V0,A

V1,A

V4,A

d3d2
d1

m4

H0,A

H2,B

H0,A

H3,C

H0,A

V2,B V3,CH0,A

H1,A

Hi,site = hash (Vi ,site)

Site A Site B Site C
V0,A

V1,A

V4,A

V5,C

d3d2
d1

m4

m5

H1,A

H0,A

H2,B

H0,A

H3,C

H1,A H2,B

H4,A

H0,A

V2,B V3,CH0,A

H0,A

Hi,site = hash (Vi ,site)

Site A Site B Site C
V0,A

V1,A

V4,A

d3d2
d1

m4

m5

H0,A

H2,B

H0,A

H3,C

H0,A

V2,B V3,CH0,A

H1,A

V5,CH1,A H2,B

H4,A

H0,A
H0,A

H1,A H2,B

H4,A

H3,C

Hi,site = hash (Vi ,site) H5,C

Site A

New
Site D

Site B

H1,A H2,B

H4,A

H0,A

H2,B

H0,A

H1,A H2,B

H4,A

H3,C

H0,A

H1,A H2,B

H4,A

O1:
O1:

H0,A

O1:

O1:
Site C

H5,C

Hash History with HashtableHash History Graph

H4,A: H3,C

H1,A: H2,B

H0,A

H0,A

H0,A

null
ParentsChild

H5,C

H2,B

H4,A

H3,C

H1,A

H0,A

H1,A H2,B

H4,A

H3,C

H5,C

H0,A

Latest : H5,C

(a) (b)

Hash History with HashtableHash History Graph

H4,A: H3,C

H1,A: H2,B

H0,A

H0,A

H0,A

null
Parents

m5

m4

d3

d2

d1

null
deltaChild

H5,C

H2,B

H4,A

H3,C

H1,A

H0,A

H0,A

(a) (b)

Latest : H5,C

H1,A H2,B H3,C

d3d2

H4,A

H5,C

d1

m4

m5

HH Properties

Size of hash history is unbounded
Simple Aging
Sharable Archived Hash Histories

Can capture equality case
When two different schedule of deltas
produce the same output
Helps faster convergence

Why Less Conflict in HH than VV
HH can covey equality information to the
descendents while VV cannot

E.g., v1 = <A:4,B:5,C:0,D:0,E:0,F:0>
v2 = <A:5,B:4,C:0,D:0,E:0,F:0>

C merges then v3 = <A:5,B:5,C:1,D:0,E:0,F:0>
E merges then v4 = <A:5,B:5,C:0,D:0,E:1,F:0>
v3 and v4 could be the same but VV shows
conflict !

If v3 and v4 are considered equal, then
all descendents of v4 will dominate v3.

If v3 and v4 are considered as in conflict,
all descendents of v4, will be in conflict with v3

Experiment Goal
Comparison with version vector result:

HH converges faster with a lower conflict rate
than a version vector scheme
To what extent is this true in practice?

Aging Policy:
the aging period for pruning hash history
vs. HH size
vs. the false conflict rate due to aging

when the pruned part of the hash history is
required for determining the version dominance

Simulation Setup
Event-driven simulator

Events are collected from CVS logs
Each user represent a replica site
Reads the event <time, user, filename>
After each event, the simulator

repeats the anti-entropy for 50% (or 25%) of the
total number of sites.
E.g., if there are 20 sites so far, the anti-entropy
is repeated for 10 times with 50% parameter
after each event.

CVS Trace Data (from sourceforge.net)

 Dri Freenet Pcgen

of events 10137 2281 404
of users 21 64 39

Duration 4/27/1994 -
5/3/2002

12.28.1999
-4/25/2002

1/17/2002 -
4/12/2002

inter-commit
time AVG 101.3 min 237.8 min 225.4 min

MEDIAN 0.016 min 34.6 min 2.16 min

Conflict rate of VV and HH

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000

of anti-entropy cycle

(#
_o

f_
re

su
lts

/#
_o

f_
cy

cl
e)

VV_conflict_rate HH_conflict_rate

 Equality rate of VV and HH

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000 100000

of anti-entropy cycle

 (
#_

of
_r

es
ul

ts
/#

_o
f_

cy
cl

e)

VV_equality_rate HH_equality_rate

Dominance rate of VV and HH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 100 1000 10000 100000

of anti-entropy cycle

 (
#_

of
_r

es
ul

ts
/#

_o
f_

cy
cl

e)

VV_dominance_rate HH_dominance_rate

Aging Period vs. HH Size

Aging
period
(days)

HH size
(# of

entries) –
dri

pcgen freenet Average

32 146.3 159.1 61.5 122.3

64 413.9 443.9 147.5 335.1

128 551.5 591.7 612.8 585.3

Aging Period vs. False Conflict
Fa lse conflict ra te due to a g ing

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 .1 2

1 1 0 1 0 0
a ging in da ys

fa
ls

e
co

nf
lic

t r
at

e
du

e
to

ag

in
g

dr i

f reenet

pc gen

Conclusion
Simple to maintain

No complexity in site addition/deletion
No need to assign unique id dynamically for newly
added replica sites

Scalable to thousands of sites
HH grows in proportion to number of update
instances not number of sites

Faster Convergence
HH can capture and propagate equality information

HH growth can be controlled effectively by
using aging policy or sharing archived hash history

Future Work

Security aspect of HH
Self-verifiable
Can detect mal-functioning site

More information
Hash History Approach for Reconciling Mutual
Inconsistency in Optimistic Replication, B. Kang, R.
Wilensky and J. Kubiatowicz, The 23rd International
Conference on Distributed Computing Systems
(ICDCS), 2003, Providence, Rhode Island USA
http://www.cs.berkeley.edu/~hoon/hashhistory

Site A Site B Site C

V1,A V2,B

V4,A

V5,C

σsite
value = signsite(value

of site’s local counter)

012
σC

0σB
1σA

2

CBA

counte
r
signat
ure

site

010
σC

0σB
1σA

0

CBA

V0,A
000
σC

0σB
0σA

0

CBA

V3,C

001
σC

0σB
0σA

1

CBA
100
σC

1σB
0σA

0

CBA

212
σA

2σA
1σA

2

CBA

Site A
V0,A

Site B Site C

V1,A V2,B V3,C

V4,A

H1H0

αA
1αA

0

H0nil

H4H2H1H0

αA
4αB

2αA
1αA

0

H0 H1 : H2H0nil

H2H0

αB
2αA

0

H0nil

Hi = hash (Vi ,site)
αsite

k = hash(αk’s

parents || Hk)
H5H3H4H2H1H0

αC
5αC

3αA
4αB

2αA
1αA

0

H1: H2H0H0 H3:H4H0nil

H0

αA
0

nil

child
authent
icator

parents

H3H0

αC
3αA

0

H0nil

V5,C

Site A Site B Site C

V1,A

d3d2
d1

V0,A

V2,B V3,C

V4,A

m4

m5

V5,C

Site A
V0,A

Site B Site C

V2,B V3,CH1H0

H0nil
H2H0

H0nil

H0

nil

V1,A

H3H0

H0nil

V4,A

V5,C

H4H2H1H0

H0 H1 : H2H0nil

child
parents

H5H3H4H2H1H0

H1: H2H0H0 H3:H4H0nil

Hi = hash (Vi ,site)

	Hash History:A Method for Reconciling Mutual Inconsistency in Optimistic Replication
	Background
	Previous Approaches:Version Vectors
	Our Proposal: Hash History
	HH Properties
	Why Less Conflict in HH than VV
	Experiment Goal
	Simulation Setup
	CVS Trace Data (from sourceforge.net)
	Aging Period vs. HH Size
	Aging Period vs. False Conflict
	Conclusion
	Future Work

