
1

1/17/01

Changing the Tapestry—
Inserting and Deleting

Nodes

Kris Hildrum, UC Berkeley
hildrum@eecs.berkeley.edu

Joint work with John Kubiatowicz, Satish Rao,
and Ben Zhao

1/17/01

Tapestry with Inserts and
Deletes

1/17/01

Outline

• Insert
– Finding surrogates
– Constructing Neighbor tables

• Delete
• Unplanned Delete

1/17/01

Requirement for Insert and
Delete

• Use no central directory
– No hot spot/single point of failure
– Reduce danger/threat of DoS.

• Must be fast/touch few nodes
• Minimize system administrator duties
• Keep objects available

2

1/17/01

Acknowledged Multicast
Algorithm

Locates & Contacts all nodes with a given suffix
• Create a tree based on IDs as we go
• Starting node knows when all nodes reached

5434504345

The node then sends to any
?0345, any ?1345, any ?3345,
etc. if possible

??345

?1345 ?4345

04345 & 54345

?4345 sends to 04345,
54345… if they exist

∅ ∅

1/17/01

Three Parts To Insertion

1. Establish pointers from surrogates to
new node.

2. Notify the need-to-know nodes
3. Create routing tables & notify other

nodes

1/17/01

Finding the surrogates
• The new node sends a

join message to a
surrogate

• The primary surrogate
multicasts to all other
surrogates.

• Each surrogate
establishes a pointer to
the new node.

• When all pointers
established, continue

01234

01334

????4
???34

Gate

79334

39334

surrogates

new node
1/17/01

Need-to-know nodes

• Need-to-know = a node with a hole in
neighbor table filled by new node
• If 01234 is new node, and no 234s existed, must

notify ???34 nodes
• Acknowledged multicast to all matching nodes

• During this time, object requests may go
either to new node or former surrogate, but
that’s okay

• Once done, delete pointers from surrogates.

3

1/17/01

Constructing the Neighbor Table
via a nearest neighbor search

• Suppose we have a good algorithm A for
finding the three nearest neighbors for a
given node.

• To fill in a slot, apply A to the subnetwork of
nodes that could fill that slot.
– For ????1, run A on network of nodes ending in 1

• Can do something more that requires less
computation, but uses nearest neighbor.

1/17/01

Finding Nearest Neighbor
• Let j be such that

surrogate matches new
node in last j digits of
node ID

• G = surrogate
A. G sends j- list to new

node; new node pings all
nodes on j-list.

B. If one is closer, G =
closest, goto A. If not,
done with this level, and
let j = j-1 and goto A.

01234

01334

61524
32134

11111

j-list is closest
k=O(log n) nodes
matching in j digits

1/17/01

Is this the nearest node?
Yes, with high probability under an assumption

• Pink circle = ball around
new node of radius d(G,
new node)

• Progress = find any node
in pink circle

• Consider the ball around
the G containing all its j -
list. Two cases:
– Black ball contain pink ball;

found closest node
– High overlap between pink

ball and G-ball so unlikely
pink ball empty while G-ball
has k nodes

G, matches in
j digits

New
node

1/17/01

The Grid-like assumption

• The algorithm for finding the first entry
works for any grid-like network

• Same as the assumption that Plaxton,
Rajaraman, and Richa make.

4

1/17/01

Delete - Terminology

54321
11115

xxx45xxxx5

In-neighbors

12345 exiting node

11111

xxxx1

out-neighbors

1/17/01

Planned Delete

• Notify its neighbors (O(log2 n))
– To out-neighbors: Exiting node says “I’m no longer

pointing to you”
– To in-neighbors: Exiting node says it is going and

proposes at least one replacement.
– Exiting node republishes all objects ptrs it stores
– Use republish-on-delete to clean things up

• Objects rooted at exiting node get new roots
– Either proactive pointer copying, or
– wait for republishes and mean time, switch routing

planes.

1/17/01

Republish-On-Delete

republish

republish

republish

republish

republish

1/17/01

Unplanned Delete

• Planned delete relied exiting node’s
neighbor table.
– List of out-neighbors
– List of in-neighbors

– Closest matching node for each level.

• Can we reconstruct this information?
– Not easily

– Fortunately, we probably don’t need to.

5

1/17/01

Handle Unplanned
Delete Lazily

• A notices B is dead, A fixes its own state
– A removes B from routing tables

• If removing B produces a hole, A must fill the hole, or be
sure that the hole cannot be filled—use acknowledged
multicast

– A republishes all objs with next hop = B.
• Use republish-on-delete as before

• Good: Each node makes a local decision, so
no DoS problems.

• Problems
– Delete may never “finish” and new nodes may get

outdated information.
– Partial delete undetected.

1/17/01

Conclusion – Insert and Delete
works!

•No central point of failure

•Touches only polylog n nodes.

•Minimizes system administrator duties

• Objects always available

