OceanStore: Data Security in an Insecure world

OceanStore Context: Ubiquitous Computing

- Computing everywhere:
 - Desktop, Laptop, Palmtop
 - Cars, Cellphones
 - Shoes? Clothing? Walls?
- Connectivity everywhere:
 - Rapid growth of bandwidth in the interior of the net
 - Broadband to the home and office
 - Wireless technologies such as CMDA, Satelite, laser
- But: Where is persistent information?
 - Must be the network!
 - Utility Model

· How many files in the OceanStore?

- Assume 1010 people, 10,000 files/person (very conservative?)
- So 1014 files in OceanStore!
- If 1 gig files (ok, a stretch), get almost 1 mole of bytes!

Basic Structure: Untrusted, Peer-to-peer Model

But What About Security?

- End-to-End and Everywhere Else!
 - Protection at all levels
 - Data Protected Globally
 - Attacks recognized and squashed locally
- How is information protected?
 - Encryption for privacy
 - Secure Naming and Signatures for authenticity
 - Byzantine commitment for integrity
- Is it Available/Durable?
 - Redundancy with continuous repair
 - Redistribution for long-term durability
- Is it hard to manage?
 - Automatic optimization, diagnosis and repair

Secure Naming

- Unique, location independent identifiers:
 - Every version of every unique entity has a permanent, Globally Unique ID (GUID)
 - GUIDs derived from secure hashes (e.g. SHA-1)
 - All OceanStore operations operate on GUIDs
- Naming hierarchy:
 - Users map from names to GUIDs via hierarchy of OceanStore objects (ala SDSI)

GUIDs ⇒Secure Pointers

But What About the Red Arrows?

Location-Independent Routing!

Start with: Tapestry Routing Mesh

Then add: Location-Independent Routing

Secure Routing

- Node names are hash of public key
 - Requests can be signed
 - Validate Responses in Request/response pairs
- Data validation built into network:
 - Pointers signed
 - Publication process verified
 - Responses from servers verified by checking GUIDs
- Denial of Service resilence: locality/redundancy
 - MACs along all links: local suppression of DoS
 - Multiple roots to avoid single points of failure
 - Multiple links for rapid recovery
 - Pointers provide *locality:* Find closest version of object

What about Update Integrity? Byzantine Agreement!

The Path of an OceanStore Update

Consistency Mechanism applied directly to encrypted data!

Archival Dissemination Built into Update

Conclusion: End-to-End and Everywhere Else

- Secure read-only data
- Secure the commitment protocols
- Secure the routing infrastructure
- Continuous adaptation and repair

For more information: http://oceanstore.cs.berkeley.edu/