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Abstract

In this paper, we give results relevant to sequential
and distributed dynamic data structures for finding
nearest neighbors in growth-restricted metrics. Our
sequential data structure uses linear space, and re-
quires O(log n) queries in expecation and O(log n)
queries for lookups with high probability. This im-
proves the results of Karger and Ruhl [4], whose data
structure uses O(n log n) space with comparable ex-
pected time bounds. This also improves on the time
bound of a load-balanced version of algorithm (for
dynamic networks) presented in [3].

Our algorithm was inspired by the object location
data structure developed by Plaxton, Rajaraman and
Richa [6], and is similar in structure to the algorithm
of Krauthgamer and Lee [5]. It is significantly
different that of Karger and Ruhl [4].

A distributed version of the algorithm presented
here is in use as a part of Tapestry [3, 8], a peer-to-
peer object location system based on [6].

1 Introduction

Finding the nearest neighbor is hard in general;
this paper looks at a specific class of metric spaces,
called by Karger and Ruhl [4] growth restricted.
Intuitively, a growth-restricted metric space looks
like a d-dimensional grid for some some dimension
d. The algorithm of this paper (and the algorithm
of Karger and Ruhl) accesses the metric space only
through queries to a distance oracle. The goal is to
find the nearest neighbor of a query point x with the
fewest of queries to the distance oracle. In addition to
giving an algorithm for finding the nearest neighbor,
Karger and Ruhl [4] describe the following general
technique. Given a starting point x and a query
point q, find a point about halfway between q and
x. (In some metric spaces, no such halfway point can
be found.) Repeated O(log n) times, this finds the
nearest neighbor. Though our algorithm also uses
this technique, it is substantially different than theirs.

Krauthgamer and Lee [5] use an approach similar
to the one presented here, but do so deterministically.
Their solution has applications in a broader class

of metric spaces. Also related is the approach of
Clarkson in [1] and the sampling technique used
by Thorup and Zwick [7] for approximate distance
oracles. Our algorithm is based on ideas used by
Plaxton, Rajaraman and Richa [6] for object location.

The algorithm of [3] used O(log2 n) queries to
a distance oracle to find the nearest neighbor with
high probability. In constrast, the algorithm here
always finds the nearest neighbor, though the number
of queries is a random variable with expectation
O(log n). This matches the bound given by Karger
and Ruhl. In the sequential case, our algorithm
can be implemented in linear space, whereas that of
Karger and Ruhl uses O(n log n).

2 Our Algorithm

Let us formally define growth-restricted. Let the ball
around x of radius r be all nodes of distance less
than or equal to r from x. The volume of this ball is
the number of nodes it contains. A metric is growth-
restricted with constant c if, for any x and r, when
the ball around x of radius r has volume s, the ball
around x of radius 2r has volume no more than cs.

The algorithm uses random sampling. We say all
nodes are at level 0. Given the set of level-i nodes (a
node is a point in the metric space) each of them is
independently chosen with probability 1/b to also be
a level-(i+1) node. That is, for i ∈ [0, logb n− 1], we
produce a random sample of the network, with level
i + 1 being a sampling of level i. A node is in the ith
sample with probability 1/bi. For level logb n, pick
exactly one node to be the root. A node in a level-
i sample picks the closest node in the level-(i + 1)
sample to be its parent. (A node may be its own
parent.) This produces a tree.

Given the single level-(logb n) root node and the
query point x, we can find the nearest neighbor as
follows. First, query the root for its children, and
keep all the children “close enough” to x. Then, query
their children, and keep the children that are “close
enough” to x and so on. Let qi be this “close enough”
distance for level-i. (We find the qi’s via a guess-and-
check method; for details, see [2].)



2.1 A Certificate To analyze the the algorithm
we introduce the notion of a certificate. The cer-
tificate is the union, over all i, of the level-i nodes
within qi. This certificate can be used to verify that
y is the nearest neighbor of x. If we can show that the
size of the certificate is O(log n), then an algorithm
that touches only nodes in the certificate takes time
O(log n). (This is a simplification; the queries to the
distance oracle are actually bounded by the number
of children of the nodes in the certificate, but this
difference only affects the constant.)

For an index i, let di be the distance from the
query point x to the closest level-i node. Then,
let q0 = d0, and for i > 0, qi = max(3di, 3qi−1).
With this definition, all level-(i−1) nodes within qi−1

have parents within qi of the query node. Since the
certificate contains, for all i, the level-i nodes within
distance qi of the query node, this ensures that if
a node is in the certificate, its parent is also in the
certificate. This is formalized in the following lemma.

Lemma 2.1. ([3]) The parent of every level-(i − 1)
node within qi−1 (of x) is within qi (of x).

2.2 Bounding the Certificate Size The diffi-
culty in bounding the certificate size is that any given
level may contain O(log n) nodes, so bounding one
level and multiplying by the number of levels gives
O(log2 n). Instead, we view the certificate as being
divided up in pieces, called subcertificates. Two ad-
jacent levels i and i−1 are in the same subcertificate
if qi = 3qi−1. The lowest level in a subcertificate is
called a base level. By definition, level 0 is always
a base level. Next, we show that the certificate has
O(log n) nodes in expectation if the metric space is
growth restricted. We first bound the size of a sub-
certificate.

Lemma 2.2. Suppose i is a base level (i.e., the lowest
level in some subcertificate), and the number of nodes
within di of x is s. Then the expected size of that
subcertificate is O(s/bi−1), provided that c2 < b.

Proof. For a given j, we must find all the level-(i+j)
nodes within a factor 3j+1 times the base radius (di).
If the original ball had volume s, then each factor
of 3 increase in radius increases the volume of the
ball by no more than a factor of c2. So the ball
of radius 3j+1di has volume bounded by s(c2)j+1,
where di and s are the base radius and base volume,
respectively. For a given j, we only need to store
the level-(i + j) nodes. The probability that a node
is an level-(i + j) node is b−(i+j). Combining these
two facts with a little algebra, we expect to have no
more than s/bi−1(c2/b)j+1 level-(j + i) nodes in the

certificate. Summing over all possible j, this gives an
upper bound of O(s/bi−1).

Now we can prove the main size lemma.

Lemma 2.3. The total expected size of the certificate
is O(log n) if b is larger than c2, where c is the
expansion constant of the network.

Proof. We bound the total size of a subcertificate
at level i by considering the expected size of the
subcertificate when there is no base level larger than
i. This is an overcount since some levels may be
charged to more than one base level.

Let si be the number of nodes within di of x.
If si = s, that means the first s nodes were not
part of the ith sample. Using this fact, we get
Pr[si > cbi] ≤ (1 − 1/bi)cbi

≤ e−c. We use this to
show that E[si/bi−1] is a constant.

High probability versions of both Lemma 2.2 and
Lemma 2.3 are proved in [2].
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