
Caching the Web with OceanStore

Patrick R. Eaton

University of California, Berkeley

Report No. UCB/CSD-02-1212

November 2002

Computer Science Division (EECS)
University of California

Berkeley, California 94720



Caching the Web with OceanStore

Patrick R. Eaton

University of California, Berkeley

November 2002

Abstract

We present Riptide, a distributed, cooperative Web

caching system. Riptide distributes nodes throughout

the infrastructure to serve and manage Web content.

Riptide is constructed on the OceanStore distributed

storage system and inherits OceanStore's scalability

and self-con�guration. Nodes may be added or re-

moved as desired. New resources are integrated and

begin serving requests automatically; attempts to ac-

cess unavailable resources are transparently routed to

alternative providers. Because the underlying system

supports mobile data, copies of content may be moved

without expensive directory update protocols. Conse-

quently, the load of serving documents may be quickly

redistributed to any of the nodes in the underlying

system. We describe the architecture of Riptide and

present a preliminary performance evaluation of the

implemented system running under a simulated work-

load.

1 Introduction

Architects of the World Wide Web have turned to a
variety of caching techniques to reduce latency and
conserve bandwidth [40, 2]. These techniques have
proven to mask temporary server and network fail-
ures and alleviate network hotspots. Many studies
have shown the e�ects on latency of caching content
near clients [22, 4]; other studies have shown the ben-
e�ts of sharing caches among user populations [11].

Researchers have sought techniques to share con-
tent among regional or national user populations with
the goal of reducing access latency for all users. Since

the presentation of the Harvest web cache [5], a num-
ber of the systems have relied on a hierarchy of
caches. User requests pass through a proxy which
�rst looks for the content in an institutional-level
cache. If the content is found, it is returned immedi-
ately to the requesting client; otherwise, the request
is forwarded to a regional-level cache. If the regional
cache cannot ful�ll the request, it forwards the re-
quest to the national-level cache. Finally, the na-
tional cache responds with the content from its own
cache of documents or after retrieving it from the
origin server. The result is a global-scale cooperative
cache.

Although hierarchies may be e�ective for caching,
they face a number of deployment challenges [31, 38].
First, server management requires signi�cant manual
coordination, often across administrative domains.
Second, each level of hierarchy introduces delay.
Third, caches near the root of the hierarchy may be-
come bottlenecks or add long queueing delays.

In response to these weaknesses, researchers have
proposed distributed caching systems [38, 27]. While
these proposals solve some of the problems of hier-
archical caching techniques, others remain. First,
the distributed caches still require signi�cant manual
administration. Further, from a performance stand-
point, these \distributed" caches still have a notion of
hierarchy buried within their design. This ultimately
impacts performance: either a hierarchy of directories
must be kept updated or caching hints must traverse
a hierarchy of participating caches. Nodes high in the
hierarchy remain potential bottlenecks.

In this paper, we explore an alternative, namely
to exploit recent work in peer-to-peer object storage

1



systems to perform Web caching. We present Rip-
tide, a distributed Web proxy caching system built on
top of OceanStore [23, 30], a global-scale distributed
object store. From OceanStore, Riptide gains self-
con�guration and automatic management. Further,
Riptide takes advantage of properties of the underly-
ing system to remove all notions of hierarchy from its
design. Riptide is based on the idea of deploying ac-
tive cache managers throughout the infrastructure.
These managers work greedily on behalf of nearby
clients to improve the quality of service for the lo-
cal user population. Local optimizations include in-
creasing levels of replication for popular documents
and migrating documents from overloaded servers to
balance load. Since OceanStore is a global-scale sys-
tem, however, the work done by a local manager can
still be leveraged by other managers in the system to
bene�t other populations.

We will describe the design and implementation
of the Riptide prototype. We demonstrate that the
system can operate in the traditional proxy caching
manner or as a push-caching system. We examine the
performance of our prototype implementation when
confronted with a simulated workload. The resulting
system is able to adapt as new services are added to
the network and to distribute load across nodes in
the network.

1.1 Organization

The rest of the paper is organized as follows. Sec-
tion 2 provides the context and motivation for our
design. Section 3 describes the relevant features of
OceanStore, and Section 4 describes the architecture
of Riptide. Section 5 describes the state of the current
prototype, and Section 6 provides some initial perfor-
mance measurements. Section 7 presents the related
research; Section 8 describes future work; Section 9
concludes.

2 Context and Motivation

Riptide is comprised of many agents distributed
throughout the network. These agents cooperate
with one another to cache web content close to where

Interdomain
Edges

Transit
Domains

Stub Domains

Figure 1: The Transit-Stub Network Model: Transit
nodes are grouped together to form highly-connected
transit domains. Groups of connected stub nodes
form stub domains that are connected to transit do-
mains by inter-domain edges.

it is being used and to keep this content up-to-date.
As discussed in Section 4, some of these agents are
co-located with client browsers while others reside in
the infrastructure.
The main goal of Riptide is to improve the quality

of service for clients browsing the Web. An important
secondary goal of Riptide is to achieve this improve-
ment with as little management overhead as possible.
Riptide achieves these goals simultaneously through
adaptive mechanisms that exploit the bandwidth and
locality properties of the physical infrastructure.

2.1 Management of Replicas

Many Web caching techniques involve static place-
ment of proxies and content distribution servers. Un-
fortunately, static schemes su�er from several de-
�ciencies. First, they are not resilient to failure.
Clients may lose service completely when a statically
con�gured resource (such as a proxy cache) fails. Sec-
ond, static systems may not behave well under load.
In order to avoid susceptibility to ash-crowds, static
systems must often be over-provisioned. Finally, if
the number of replicas is statically over-provisioned
to handle high load, then the bandwidth required to
keep these excess copies up-to-date would be exor-
bitant; this tends to discourage use of push-based
update of caches.
Riptide utilizes the OceanStore infrastructure to

2



permit a uid assignment of server resources to repli-
cas of Web content. Replicas may be transparently
created, moved, or destroyed to meet the constraints
of the system. Since clients utilize a fault-tolerant,
decentralized routing mechanism to locate Web con-
tent, they see a graceful degradation in quality of
service as resources fail or are reassigned.

2.2 Locality and Transit-Stub

Topologies

The global Internet appears as a transit-stub topol-
ogy [48], with clusters of tightly-coupled nodes
that are connected via low-dimensional inter-domain
links. See Figure 1. Clusters at the edges of the
network, often called \stub domains", consist of
many individual clients and servers connected via
low latency (< 1ms { 10ms), high-bandwidth (� 100
MB/s), redundant links. A typical stub might in-
clude all of the the systems and networks within a
building or organization. Note, the size of a stub do-
main is determined by connectivity characteristics of
the network, not vice versa. A stub domain may be
just a few machines in a small home network at the
end of a cable modem, a few dozens of computers con-
nected in a LAN, or several thousands of computers
spread across a university campus.
While traÆc within a stub is virtually uncon-

strained, traÆc between the stub and the rest of the
world is often greatly restricted. Latencies between
di�erent stubs are often 100ms or more, and the to-

tal extra-stub bandwidth might be greatly restricted
(e.g. 100MB/s total for all outside communication).
Further, extra-stub bandwidth is typically not free.
As a result, organizations may place packet shapers
or other traÆc bottlenecks along transit links. These
bottlenecks further increase perceived latency and de-
crease available bandwidth.
Another important goal, therefore, is to attempt to

place caches of information in the same stubs as the
clients that are using this information. Also, since the
topology of the network has somewhat more structure
than just stubs and inter-stub links, a second-order
optimization would seek to place cached information
in an adjacent stub when the current stub could not
accommodate additional information.

Further, traditional Web caching policies often
mark data that is updated frequently as uncacheable.
Thus, an important additional optimization would be
to place replicas of popular, \uncacheable" content
within the stubs that it was accessed and push up-
dates to these replicas [16, 32]. For popular items, the
result would consume much less inter-domain band-
width than continuous polling.

2.3 Reduction of Server Load

Overcoming limitations in network bandwidth and
latency are often not the only justi�cations for Web
caching technologies. In many cases the response
time from an overloaded server is many times the
round-trip network latency to that server. In fact,
extreme server overload occurs during ash-crowds,
unpredictable traÆc surges that swamp servers of
popular content. Thus, another important goal for a
Web caching architecture would be to transparently
adapt and shield clients from the e�ects of overloaded
servers. For rapidly changing content, such a shield
may require eÆcient, push-based updates of data.

3 The OceanStore

Infrastructure

In this section, we briey introduce some of the tech-
nologies that enable Riptide's design. Riptide is built
on top of OceanStore [23, 30], a global-scale persis-
tent storage system. OceanStore provides a server-
less infrastructure that operates without single points
of failure to provide continuous access to stored in-
formation. To improve performance, data is allowed
to be cached anywhere, anytime; OceanStore calls
this feature promiscuous caching . A data location
infrastructure tracks the location of data as it mi-
grates through the system. Continuous monitoring
enhances performance through pro-active movement
and replication of data. Further, cached replicas of
a given object organize themselves into a multicast
tree to facilitate timely dissemination of updates.

3



C

B
A

A A
A

B

A

Read A Read B

Read C

Read B

Tapestry

Figure 2: Decentralized Object Location and Routing

(DOLR): Messages are addressed to objects (shown
here as discs) rather than IP addresses. DOLR in-
frastructures such as Tapestry provide deterministic

routing { guaranteeing to �nd objects if they exist.
They also provide locality { utilizing local resources
and �nding local objects whenever possible.

3.1 Secure Hashes for Naming

Riptide relies on the ability to uniquely identify
Web documents and network services. We will re-
fer to these as generically as objects in the future.
OceanStore employs secure hashing to create globally
unique identi�ers or GUIDs. A GUID is constructed
by applying a secure hashing algorithm over the con-
catenation of the public key of the principal owning
the object and the name of the object. In Riptide,
we use SHA-1 [25], but the system has been designed
to permit the use of any hashing algorithm.

3.2 Distributed Object Location and

Routing

Peer-to-peer researchers have begun to explore dis-
tributed object location and routing (DOLR) ser-
vices [17, 28, 35, 37]. DOLR systems are overlay net-
works that o�er a distributed framework in which
objects that are named by GUIDs can be located
quickly. Since information about these objects is dis-
tributed throughout the system, messages are routed
to objects by passing them from node to node until
they reach their destination.

OceanStore is built on top of the Tapestry
DOLR [17, 50]. OceanStore also uses attenuated
Bloom �lters [29] for probabilistic local-area routing.
The combination of Tapestry and attenuated Bloom
�lters provides locality in routing. If a DOLR is said
to exhibit good locality, then messages will be routed
over a minimal overlay path to their destination, and
when objects are replicated, requests for that object
will be routed to the nearest copy of that object. Fig-
ure 2 illustrates this idea.

Locality is important for a number of reasons.
First, routing locality improves reliability and avail-
ability. As the distance traversed by a query in-
creases, it is more likely that the query will be lost
or corrupted or will encounter a network partition.
Second, �nding local replicas of data without rout-
ing outside the local area reduces the latency to
access documents. Since local-area network laten-
cies are a few milliseconds while wide-area latencies
can stretch to hundreds of milliseconds, locality can
have a tremendous impact on the latency observed
by users. Finally, locality optimizations reduce the
bandwidth consumed by a query. By using only lo-
cal routes to �nd local objects, the system minimizes
the number of messages that must use bandwidth-
constrained interdomain links that contribute to the
bisection bandwidth of the network. Keeping routes
in the local area allows the network to support more
simultaneous operations.

3.2.1 Tapestry

The Tapestry DOLR provides object location and
message routing services by maintaining a distributed
index of all objects and services in the network.
The routing algorithms and index maintenance pro-
cedures are designed to exploit locality. Tapestry pro-
vides algorithms to automatically insert and remove
nodes from the infrastructure [17]. Further, it au-
tomatically routes around failed nodes and network
links.

Tapestry identi�es the documents and services in
its index by GUIDs. When a node wishes to insert
a document or provide a service, it performs a pub-

lish operation, causing Tapestry to update its dis-
tributed index to record the location of the new ob-

4



ject. To �nd an object, Tapestry searches the index
for the GUID using a variation of pre�x-based rout-
ing; that is, Tapestry searches the index by incremen-
tally routing toward the object resolving one digit of
the GUID at a time. Although worst-case behavior of
Tapestry may involve a number of network hops that
is logarithmic in the number of participating nodes,
Tapestry locates objects much more quickly in prac-
tice [50].

3.2.2 Attenuated Bloom Filters

Attenuated Bloom �lters [29], a variant of standard
Bloom �lters [3], are used to provide fast, proba-
bilistic routing in the local area. A probabilistic
routing algorithm is one that �nds objects quickly
when it can and fails equally quickly when it can-
not. A hybrid routing framework consisting of at-
tenuated Bloom �lters on top of Tapestry �nds local
objects quickly and remote objects eÆciently [29]. In
OceanStore, attenuated Bloom �lters utilize a self-
organizing overlay network that exploits the locality
properties of Tapestry; document publishing consists
of a compressed wave of information that propagates
to a small radius in the overlay network. From the
standpoint of this paper, the hybrid combination pro-
vides a self-organizing DOLR with good routing lo-
cality.

3.3 Replication and
Update Dissemination

An eÆcient DOLR with routing locality provides
great exibility to place replicas anywhere, anytime.
For Riptide, this means that any participating node
in the DOLR can hold Web content. From a man-
agement standpoint, this has a number of important
advantages. For example, Riptide may adjust the
number of replicas to match the popularity of a doc-
ument; popular documents could be widely replicated
to distribute the load of serving them.

One challenge with replication is keeping replicas
up-to-date. OceanStore provides an important mech-
anism to assist in updating replicas. All replicas for
a given document are tied together into a document-
speci�c multicast tree, or dissemination tree [23, 6].

Dissemination Tree Overlay Links
Physical Links

Figure 3: Dissemination Tree: OceanStore connects
replicas in a multicast tree. The system uses the over-
lay tree to eÆciently disseminate updates to the repli-
cas.

This tree is self-organizing; whenever a new replica
is created in the system, OceanStore uses the DOLR
to locate one or more additional replicas to use as
parents for the new replica. Figure 3 shows how a
dissemination tree may be constructed to connect a
number of replicas.
The dissemination tree allows the system to for-

ward updates to all replicas of a given document.
From the standpoint of Riptide, the dissemination
tree provides a natural mechanism for push-based
content distribution.

3.4 Comparison to Content
Distribution Networks

Content distribution networks attack many of the
same problems and share many of the same goals as
Riptide. Indeed, companies like Akamai and Digital
Island have developed successful businesses by solv-
ing these problems. In this section, we will describe
briey how the approach taken by Riptide augments
the capabilities of traditional CDNs.
A content distribution network (CDN) is a collec-

tion of servers distributed throughout the network.
Content from origin web servers is replicated on the
non-origin servers available in the CDN. By o�oading
work from the origin servers and distributing replicas
throughout the network, the CDN strives to serve
content to clients faster than the origin server could
serve the content [21, 19]. Most CDNs operate by
using the DNS system to redirect requests from the

5



origin server to servers in the CDN.

A content distribution network can increase its
reach and e�ectiveness by increasing the number of
points in the network that contain servers. As a CDN
increases the number of replicas that it manages, the
administration burdens increase. Furthermore, there
are many places in the network where a CDN sim-
ply cannot place a replica. For example, it is un-
likely that a CDN would be permitted to place repli-
cas inside of a corporate or university network. We
will show that by using new advances in peer-to-peer
research, administrators inside these closed domains
can add Riptide agents to the network that provide
bene�ts to the local user population while still coop-
erating with the larger network outside of the orga-
nization.

CDNs usually operate their own authoritative DNS
name server that manages the address mappings for
all machines in their network. These name servers
respond to DNS requests with a reply that contains
a TTL of a low value. Thus, the CDN operator can
change the redirection function in their network rel-
atively quickly [21]. As we will show, Riptide does
not rely on the DNS system to locate replicas in the
system. In fact, by using a distributed location and
routing infrastructure as discussed in Section 3.2, we
are able to update the mapping to reect new re-
sources nearly instantly.

4 The Riptide Architecture

OceanStore provides the abstraction of a large, dis-
tributed storage infrastructure. To create a web
caching application, we view the storage infrastruc-
ture as a large, virtual cache in which to store copies
of web content. All nodes that participate in the
OceanStore storage infrastructure, not just nodes
serving roles speci�c to the web caching, can store
content for retrieval by the web caching application.

In this section, we present the Riptide architecture
to manage this large, virtual cache. First, we describe
the format of web content stored in OceanStore. We
then provide a description of the components that
interact with the storage infrastructure. Finally, we
discuss how the components cooperate to provide

better service to clients browsing the web.
Riptide works by migrating Web content into

OceanStore. Clients �rst search for documents in
OceanStore. If the requested content is available
through OceanStore, the DOLR routing framework
will locate it quickly. Otherwise, clients access the
content directly from the origin Web server while si-
multaneously requesting that the content be placed
into the caching infrastructure for future access.

4.1 Storing Web Content
in OceanStore

Before web content can be read from the Riptide web
cache, it must �rst be read from the origin server
and copied into OceanStore. In the OceanStore in-
frastructure, the copy of the content is named by a
secure hash of the URL of the document. The data
that is actually stored in the OceanStore data object
is the concatenation of the HTTP header and the
document's content. By storing the original response
header along with the document's content, agents ac-
cessing the Riptide web cache do not need to recreate
a valid HTTP header for each document; they can
simply read the all of the contents of the OceanStore
object.
Riptide does, however, treat one piece of informa-

tion in the HTTP response specially. When storing
an HTTP response into OceanStore, Riptide records
the time of the response in the metadata of the
OceanStore data object. By storing this piece of
information in the metadata, Riptide can take ad-
vantage of OceanStore mechanisms to determine if
the cached content is fresh enough to serve to the
client without reading the content itself. It is impor-
tant that Riptide be able to evaluate the freshness of
cached content in order to maintain compliance with
HTTP's cache control requirements.

4.2 Components

Riptide is comprised of many agents distributed
throughout the network that interact with virtual,
distributed caches. Each agent is of one of three
types: browser proxy, gateway, or cache manager.
Browser proxies are located on the same machine as

6



(a) (b) (c)

Browser Proxy

Gateway

Cache Manager

Other Node

Key)

Figure 4: Inserting a document into the cache. (a) The browser proxy uses the DOLR to search the cache for
content. The search terminates without locating the requested object. (b) While retrieving the document
from the origin server, the proxy noti�es a nearby cache manager that the document is unavailable. (c) The
cache manager sends a request to a nearby gateway to insert the document in the cache.

a user's web browser; proxies intercept requests from
the browser and search the cache for a copy of the
requested content. Gateways are services distributed
throughout the infrastructure and are responsible for
reading web content from content providers and stor-
ing it into OceanStore. Cache managers are services
distributed throughout the infrastructure and are re-
sponsible for managing replicas of Web content to
provide better service for clients in their local area.
Figure 4 shows how the three types of agents cooper-
ate to insert information into cache; the process will
be discussed further in Section 4.4.

4.2.1 Content Caches

Technically a part of the OceanStore infrastructure
rather than a component of the Riptide architecture,
the content caches provide storage for replicas of web
content. OceanStore stores objects both in mem-
ory and on disk. Every node participating in the
OceanStore infrastructure, not just those acting as
Riptide agents, serves as a content cache. By default,
OceanStore manages storage on individual nodes us-
ing the LRU replacement policy. Because the content

cache are really nothing more than OceanStore stor-
age nodes, the Riptide content caches also manage
storage using the LRU replacement policy. (There
are interfaces to allow applications to manage stored
objects using di�erent policies, but those interfaces
are not used in this work.)

4.2.2 Browser Proxy

The browser proxy is an agent that works on behalf
of a user's browser to retrieve Web content. The
browser proxy can be used in two di�erent con�gura-
tions. In the �rst con�guration, a proxy is installed
on the same physical machine as the client's web
browser. In this con�guration, the client can commu-
nicate directly with the OceanStore infrastructure.
In an alternate con�guration, the browser proxy can
be deployed in the infrastructure. In this con�gu-
ration, clients forward web browser requests to the
browser proxy as in a traditional proxy con�guration.
The client then relies on the browser proxy on another
machine to communicate with the OceanStore infras-
tructure. Throughout the remainder of this paper, we
will assume that the browser proxy is installed on the

7



Client Browser
Proxy

ClientBrowser
Proxy

OceanStore

Ttranslate TtranslateTlocate

HTTP Riptide Riptide HTTP

Client Browser
Proxy

OceanStore Browser
Proxy

Web Browser
Proxy

Client

T TTT

HTTP HTTPRiptide Riptide HTTPHTTP

Figure 5: Timeline of Browser Proxy Operation. The top timeline shows the operation of the browser proxy
when the requested document is cached in Riptide; the bottom timeline shows the operation of the proxy
when the document cannot be found in the cache. The small labels above the arrows indicate the message
protocol used at each stage of the operation.

client machine.
The operation of the browser proxy, shown picto-

rially in Figure 5, starts by intercepting an HTTP
request from the browser. The browser proxy then
makes a preliminary decision about the cacheability
of the requested object. For example, the proxy may
surmise that requests that contain cookies, reference
CGI scripts, or contain variables embedded in the
URL are uncacheable. If the proxy deems that the
requested document might be cached, it translates
the HTTP request into an OceanStore request and
dispatches it to the system. If the URL indicates
that the document may not be cached, it forwards
the original HTTP request to the origin server.
During the translation process, the browser proxy

hashes the URL of the requested document to form
the GUID for the OceanStore request. If the HTTP
request includes any additional restrictions, such
as the freshness of the data, the proxy translates
these speci�cations into one or more read predicates.
If OceanStore �nds the document in the cache, it
will return a copy of the content to the proxy; if
OceanStore cannot �nd a copy of the requested con-
tent or cannot �nd a version of the requested content
that satis�es the read predicates, it will return a fail-
ure response to the proxy. If the system returns a
successful read response, the proxy converts the re-

sponse into an HTTP response and serves the data
back to the browser. If the browser proxy receives
a failure response, it requests the document directly
from the origin server.

The browser proxy uses several timeouts to ensure
that requests to the cache fail fast without adding
too much latency to the request. This corresponds to
keeping Tfail shown in Figure 5. First, on all cache
read requests, the browser proxy speci�es a time-to-
live (TTL) of a small number of hops. If after a num-
ber of hops equal to the TTL �eld, the OceanStore
DOLR has not found a copy of the content, it will re-
turn a failure response to the browser proxy. Because
of the locality properties of the DOLR discussed in
Section 3.2, the �rst few hops will usually be in the
local area and thus very fast. The second type of
timeout used by the browser proxy is a simple time-
out alarm. If the request times out before the proxy
receives a response, the browser proxy will forward
the request on to the origin server.

The browser proxy also communicates with other
agents to improve the performance of the system.
This interaction will be described in Section 4.4.

8



4.2.3 Gateway

Gateways are services distributed throughout the
network. Each gateway advertises its service by pub-
lishing a well-known GUID that identi�es the node
as a gateway service provider. Others can locate
a gateway, then, by routing a message through the
OceanStore DOLR to the well-known identi�er.

The main role of a gateway is to add new content to
the infrastructure and update cached content that is
stale. Gateways read content from the origin servers
of a content provider using standard HTTP. Examin-
ing the header of the response, a gateway determines
whether the document may be safely cached. If the
document may be cached, the gateway updates stale
copies in the cache or inserts a copy of the content;
otherwise, the gateway discards the content.

As will be discussed in Section 4.4, gateways use
hints from users to determine what content to exam-
ine and consider for caching. More proactively, gate-
ways can crawl the web using techniques similar to
those used by search engines to search for new content
to cache. They could also employ models to predict
which documents are likely to be accessed from previ-
ously cached pages [22, 26, 13]. The current Riptide
prototype uses only hints from users to determine
what content to cache; exploring the proactive tech-
niques is an area of future research.

Any ISP or corporation wishing to serve as a web
cache provider could deploy gateways in the network.
In fact, it might be advantageous for smaller com-
panies or organizations to deploy gateways to en-
sure that content of local import is available in the
cache. Each cache provider would use a di�erent well-
known GUID to identify their gateways and would
use a di�erent public key to create the names of their
documents. While the browser proxy would con-
tain keys for a number of default cache providers,
by de�ning a set of cache provider keys to use, a user
could con�gure their browser proxy to search only the
caches owned by providers that they trust or know
are nearby.

While any OceanStore application, including the
browser proxy, can add objects to the cache, there are
several reasons why our design delegates that task to
a specialized component. Most importantly, the ar-

chitecture calls for a specialized component to match
the trust assumptions of the underlying OceanStore
system. OceanStore assumes a fundamentally un-
trusted infrastructure. Because we assume untrusted
clients will be operating in the infrastructure, we can-
not trust that content stored in the cache by clients
has not been altered or manipulated. Instead, we
create another type of agent that is to be controlled
by larger and more respected organizations to in-
sert content in to the cache. By marking content
with the key of the trusted organization, clients have
greater assurance to the integrity of objects stored
in the cache. Another reason is that creating and
updating objects in OceanStore requires several dig-
ital signatures. While the computation required to
create those signatures is not excessive, we wanted
to remove the complexity and computational load
from the browser proxies, especially those running
on thin clients. Finally, recall from Section 3.1 that
OceanStore uses the public key of the object's owner
to create the name, or GUID, of an object. Thus, to
�nd content in the cache, a browser proxy must know
the public key of the principal that inserted the ob-
ject. The opposing goals of maintaining the integrity
of the key pair and making the public key well-known
are most tractable when the private key is known by
only gateways controlled by a single cache provider.

4.2.4 Cache Manager

While the gateways and browser proxies provide the
vital functionality of the system, namely the abil-
ity to write content into the cache and read con-
tent from the cache, the system does not yet contain
any components to adapt the service to the needs of
users. The cache manager �lls this void by directing
the number and location of replicas to improve the
level of service seen by local clients. We will describe
speci�cally how the cache manager responds to user
access patterns in Section 4.4.

Like gateways, cache managers are services dis-
tributed throughout the network. Each manager ad-
vertises its service by publishing a well-known GUID
that identi�es the node as a cache manager. Others
can locate a cache manager, then, by routing a mes-
sage through the DOLR to the well-known identi�er.

9



Because cache managers are most useful to those
nearest to them, we envision that the cache managers
will be administered by companies or organizations
wishing to improve the service their clients receive.
As an organization grows or moves people about, they
can move the cache managers to serve better their
members.
Note, though the cache managers may cache some

content directly, this is not their primary responsibil-
ity. The cache managers are responsible for direct-
ing the creation and migration of replicas near the
manager to improve service to local clients. Content
is actually stored throughout the underlying system.
In fact, because OceanStore supports promiscuous
caching which permits any object to be cached any-
where at anytime, web content can be cached even
on nodes that are not explicitly providing services to
the web caching infrastructure.

4.3 Management Mechanisms

Riptide leverages the fault-tolerance and location-
independence properties of OceanStore. In this sec-
tion, we describe how Riptide uses these features to
ease the burden of maintaining caches and con�gur-
ing clients.
Because Tapestry supports automatic node in-

sertion and removal and eÆcient service discovery,
administrators can easily deploy the Riptide cache
and modify a deployed system without con�guration
changes. To expand the reach of the web cache to
new client populations, administrators simply insert
a new cache manager into the network. Tapestry will
discover the new cache manager and begin to route
client requests to the new agent. Clients in the area
will initially continue to retrieve content managed by
more distant cache managers. As the new cache man-
ager is able to create more replicas in the local area,
Tapestry will route client requests to the new, closer
replicas. The service can grow evolutionarily and no
client con�guration changes are ever necessary.
Furthermore, organizations can receive the bene-

�ts of cross-organizational cache sharing without the
challenges of managing a hierarchy across adminis-
trative domains [47]. Because Tapestry can route to
content stored anywhere in the network, cache man-

Proxy

Figure 6: Shared Proxy Architecture: All clients are
con�gured with the location of the proxy and connect
directly to the proxy.

Figure 7: Riptide Architecture: Browser proxies use
the OceanStore DOLR to automatically locate a
nearby cache manager.

agers can create replicas from copies of content stored
in other domains.

Finally, Riptide is tolerant to network and node
failures. The underlying Tapestry DOLR automati-
cally routes around failures in the network. If a node
providing a certain service should fail, Tapestry will
transparently route requests to an alternative service
provider.

4.4 Adaptive Performance
Optimizations

Riptide leverages the exible, self-organizing mecha-
nisms of OceanStore to improve the quality of service
for clients. In this section, we describe how informa-
tion is gathered and communicated among Riptide
components to allow the cache managers to improve
the quality of service for clients in their local area.

In typical proxy caching schemes, as shown in Fig-

10



ure 6, each client is statically con�gured to forward
all requests to a speci�c proxy. The proxy is able to
support cooperative caching among the client pop-
ulation because it is a shared resource that can ag-
gregate the requests of many clients. In our scheme,
each client has its own proxy and so the proxy is not
well-suited to perform cooperative caching. Instead,
the browser proxies send information to a nearby
cache manager, as shown in Figure 7, by sending the
messages through the OceanStore DOLR to the well-
known identi�er for a cache manager. Because of the
locality properties of the DOLR, this message will
�nd a nearby cache manager. Furthermore, if a cache
manager fails, the OceanStore DOLR will transpar-
ently route the information to the next closest man-
ager.
The proxy can send information of various forms to

the cache managers. Most simply, a client can send a
message notifying the manager that it was unable to
access a document from the cache. Alternatively, the
proxy may send a message indicating that it was able
to successfully retrieve a document from the cache
but that the retrieval cost was greater than expected.
The cache manager takes various actions depend-

ing on the content of the message. Information that
a document was not available in the cache causes the
cache manager to send a message to a nearby gate-
way requesting that the document be brought into
the cache. To send the request to a nearby gate-
way, the manager simply sends a message through
the OceanStore DOLR addressed to the well-known
identi�er of gateway services. Figure 4 shows the how
a document might be inserted in the cache.
When a cache manager receives a hint that the

cost, measured by latency or the number of network
hops, to access content from the cache was too high, it
may elect to create new replicas of content in the local
area. Figure 8 shows how a cache manager can use
documents cached by other managers to improve the
service for its own client population. Creating a new
replica of a cache document is a relatively inexpensive
operation compared to cost of initially caching the
document because creating a replica does require the
expensive cryptographic operations that are needed
to write an object into OceanStore. Thus, a cache
manager creating a new replica is able to leverage

the work performed by other managers and gateways
in the infrastructure. This is how Riptide is able to
provide the bene�ts of cooperative caching.
The cache manager may also improve the level

of service available to its local client population by
distributing additional replicas of popular content
throughout the local area. Figure 9 shows how a
cache manager can reduce the load of responding to
requests for popular documents by spawning more
replicas. With more replicas, clients can bene�t from
the aggregate read bandwidth all nodes hosting repli-
cas. Additional replicas could also improve the la-
tency of accessing popular documents from the cache
by reducing the queueing delays at nodes hosting
replicas. Note, because content is located directly
through Tapestry, replicating content does not re-
quire any additional directory update steps.

4.5 Push Caching

We have thus far described Riptide as a system
that performs a variation of proxy caching on top
of OceanStore. We now describe how the same com-
ponents can be used to support push-caching. While
proxy caching is a passive technique that responds
to streams of user requests, push-caching is an ac-
tive technique that proactively pushes new content
throughout the network so that it is nearby and cur-
rent when requested by a client.
To provide push-caching capabilities, Riptide re-

lies on OceanStore's dissemination tree discussed in
Section 3.3. As cache managers create replicas of
content, the replicas automatically tie themselves in
to the document-speci�c dissemination tree. As the
gateways update the content stored in the cache, the
updates are pushed down the dissemination tree to
all of the replicas.
Riptide can use any one of several techniques to

determine when documents are changed by the con-
tent provider. Most simply, Riptide can rely on the
browser proxies to observe that cached content is
no longer valid, as de�ned by HTTP's cache control
headers. The browser proxy would then send a hint
to the cache manager; the cache manager would re-
quest that the gateway update the cached copy. The
update would then be distributed to all other repli-

11



(b)(a) (c)

Figure 8: Moving documents in the cache. (a) The proxy successfully retrieves a document from the cache,
but the retrieval cost was higher than expected. (b) The proxy noti�es a nearby cache manager that
retrieving the document from the cache is too costly. The cache manager creates a replica of the document
and places it close to its local user population. (c) Another proxy requests the same document and �nds it
rapidly.

(a) (b)

Figure 9: Replicating documents in the cache: (a) The load for serving a popular document from the cache
can be excessive. (b) By replicating the content, the load on each individual replica is reduced.

12



cas. If the gateway �nds that the content has not
changed, it can push a heartbeat down the dissem-
ination tree. A heartbeat is a small certi�cate used
by the underlying system to indicate a version cre-
ated some time ago is still current. When it receives
a heartbeat, a replica knows that it is still connected
to the dissemination tree and will receive any updates
to the object.
Alternatively, if the gateway observes that its

clients are frequently requesting that certain docu-
ments be updated, it can install a monitor to period-
ically poll the origin server for the content. By prop-
erly adjusting the polling frequency to account for
the cache expiration policies of a document, a moni-
tor watching a popular document can ensure that all
replicas are current while reducing the total load on
the origin server.
Finally, if a content provider is willing to cooper-

ate actively with a gateway, it can proactively push
new content to the gateway and in to the cache. To
allow clients to verify that content was indeed cur-
rent, the gateway would push heartbeats down the
dissemination tree.
In Section 6, we will present an evaluation of

monitor-based pushed caching. Introspective push
caching and publisher-assisted push caching tech-
niques are not examined any further.
The e�ectiveness of Riptide's push-caching capa-

bilities are intimately related to the eÆciency of the
dissemination trees constructed by the underlying
system. An optimal dissemination tree would use
one interdomain link to access each stub and would
cross that link exactly one time. Trees with min-
imal interdomain crossings are preferable because
they minimize the amount of traÆc sent over the in-
terdomain links that tend to be congested, costly,
or of limited bandwidth. To creating eÆcient trees,
the system depends on the locality properties of
the underlying DOLR. Figure 10 shows examples of
poorly-constructed and well-constructed dissemina-
tion trees.
Previous research has shown that using a multicast

tree for the purpose of push-caching can be an ef-
fective technique for popular documents that change
frequently [16, 32]. We will show in Section 6 that
Riptide can shield load from the origin web server and

reduce the bandwidth requirements over the interdo-
main link. Further, we will show that push-caching
via the dissemination tree can propagate content up-
dates with suÆcient eÆciency to allow content that
is traditionally marked uncacheable to be cached in
Riptide.

5 Implementation

In this section, we describe the current implemen-
tation of the Riptide web cache. We have imple-
mented a prototype of the Riptide caching system.
It runs on the OceanStore [23] distributed storage
infrastructure which in turn uses Tapestry [50] and
attenuated Bloom �lters [29] for location and rout-
ing. Riptide, like OceanStore is written completely
in Java using the SandStorm staged, event-driven ar-
chitecture [42]. We use the NBIO [43] library to pro-
vide an asynchronous, event-based Java interface to
the network. The implementation of Riptide contains
2200 semicolons. The implementation of an auxiliary
asynchronous HTTP library described in Section 5.2
contains approximately 1200 semicolons.

5.1 Replica Placement Strategies

The e�ectiveness of the cache manager depends
greatly on how eÆciently it can place replicas of con-
tent in the local area so that the browser proxies
can �nd and retrieve them quickly. The cache man-
ager relies on the primitives provided by OceanStore
for exibility in replica placement. Prior to the im-
plementation of Riptide, OceanStore provided primi-
tives for only one type replica placement. That prim-
itive simply allowed a client to place a replica on its
own node. Using only that primitive, Riptide would
be forced to cache all content at the nodes hosting
cache manager services. This would limit the scala-
bility and fault-tolerance of the design. In order to
realize the full exibility of our design, we �rst devel-
oped another replica placement primitive.

To understand the new primitive, one must �rst
understand how Tapestry locates objects in the in-
frastructure. We will refer to Figure 11(a) through-
out the description. Tapestry uses its distributed in-

13



Dissemination Tree Overlay Links
Physical Links

(b)(a)

Figure 10: E�ective Dissemination Tree Building. (a) Dissemination trees that use multiple interdomain
links (or cross a single interdomain link multiple times) are less eÆcient. (b) An optimal dissemination tree
crosses exactly one interdomain link for each stub that contains a replica.

OP OP

OP

OP

OP

(a) (b)

Figure 11: Replica Placement Strategies: The �gure shows the Tapestry mesh arranged as a tree rooted at
the given object's root nodes. (a) The cache manager uses the default replica placement primitive to create
a replica on the local node. The steps taken to locate the replica are shown for three nodes. (a) The cache
manager uses the new replica placement primitive to create a replica one hop closer to the object's root.
Again, the steps taken to locate the replica are shown for three nodes.

14



dex to arrange all nodes into a per-object tree rooted
at the node whose identi�er most closely matches the
object's GUID. Tapestry's index allows it to main-
tain all trees for all objects simultaneously. During
the publish operation, Tapestry traverses all nodes
between the object being published and the root of
that object's tree. During the tree traversal, Tapestry
updates its distributed index and deposits a object-

pointer to the location of the object. The object-
pointer may refer to the current node. Figure 11
shows which nodes would store object-pointers for
the given object.
Object location proceeds in three steps. First,

Tapestry climbs toward the root of the tree until it
�nds a object-pointer. In the worst case, Tapestry
climbs the tree all the way to the root. If the object is
published in the infrastructure, the root will contain a
object-pointer to the object. If the root does not con-
tain a object-pointer to the object, Tapestry deduces
that the object does not exist and sends a failure
response back to the client. Assuming that a object-
pointer was found, in the second step, Tapestry fol-
lows the object-pointer to the requested object. Fi-
nally, the object is returned directly to the request-
ing client. Figure 11(a) shows the location process
for three nodes in the infrastructure. Note, for nodes
contained in the tree rooted at the node storing the
object, the object-pointer found will refer to the node
performing the query. In this case, the second step re-
quires no additional network messages. In such cases,
the second step is not shown in the �gure.
The new replica placement primitive that we im-

plemented takes advantage of Tapestry's object lo-
cation algorithm to place replicas on nodes where
they can be found by the more clients in the local
area more quickly. The primitive works by partially
climbing the tree towards the object's root node. Af-
ter several hops toward the root, the request halts
its climb and creates a replica of the object. Fig-
ure 11(b) shows an example where the cache man-
ager has used the new primitive to create a replica
of the object one hop up the object's tree. The �g-
ure also shows the three steps in the procedure for
locating this new replica from three locations in the
network. By climbing the tree several hops before
creating a replica, the number of nodes contained in

the sub-tree rooted at the replica increases. For some
of those clients, locating the object now requires an
extra network hop. Because of Tapestry's locality
properties, this extra hop will usually be short and
fast. For a much greater number of clients, locating
the object will proceed more directly without the cost
of the location procedure's second step.
We will show in Section 6.5 how this new replica

placement primitive can be used to distribute replicas
throughout the network.

5.2 Non-Blocking, Event-Driven

HTTP Library

While the Java speci�cation does provide several util-
ity classes for applications to access web content, the
Java standard library lacks an implementation of a
full HTTP library. So, before implementing Rip-
tide, we �rst developed a Java HTTP library that
utilizes the non-blocking network interface provided
by NBIO.
The main interfaces to the library are the

HttpClient and HttpServer classes. An appli-
cation that needs to retrieve web content uses
the HttpClient. The application creates an
HttpRequest message and enqueues it on the sink of
the HttpClient. The HttpClient makes a connec-
tion to the origin server, fetches the document, and
then places the response back on the application's
sink.
Applications that need to service requests for web

content use the HttpServer. The HttpServer opens
a server socket on a speci�ed port listening for in-
coming connections. After receiving a request from
the network, the HttpServer posts the HttpRequest
to the application's sink. The application constructs
an HttpResponse object and enqueues it onto the
HttpServer's sink. The HttpServer then sends the
response back to the requesting agent.
An application can create a simple proxy by em-

ploying both an HttpClient and HttpServer. The
proxy simply passes requests from the server directly
to the client and transfers responses directly from the
client back to the server.
The library code is based loosely on code devel-

oped by Matt Welsh for the Haboob web server [42].

15



Both the HttpClient and HttpServer use the store-
and-forward approach to message transmission. The
library supports both HTTP/1.0 and HTTP/1.1 pro-
tocols. For HTTP/1.1, the library supports both
identity and chunked transfer codings. The library
provides support for persistent connections; it main-
tains network ordering in the library code so that
application can handle requests and responses in any
order. The library allows the application to exi-
bly control and query request and response header
�elds. The library allows the application to forward
all requests or responses to other proxies, even those
developed using other libraries. Finally, the library
allows applications to tag requests and responses with
arbitrary objects for easier event continuations.

5.3 Browser Proxy

The implementation of the browser proxy provides all
of the functionality described in Section 4.2.2. The
proxy, shown in Figure 12, uses components from the
HTTP library to receive requests from the browser
and retrieve content not available in the cache from
the origin server. The browser proxy contains a small
component to perform the relatively simple task of
translating from HTTP requests to OceanStore read
requests and from OceanStore read results to HTTP
responses. The proxy uses TCP/IP for all HTTP
traÆc and the OceanStore DOLR for all other com-
munication. The protocol for reading documents
from the cache is de�ned by OceanStore; the format
of the cache hints sent to the cache managers is de-
�ned by Riptide.
The current implementation of the browser proxy

contains several notable simpli�cations. First, the
browser proxy does not perform any cacheability
checks based on the URL of the HTTP request. The
proxy forwards all requests to the OceanStore in-
frastructure. Because these checks are merely sim-
ple string comparisons, we do not expect the inclu-
sion of these checks to signi�cantly impact the sys-
tem. The simpli�cation has no impact on our perfor-
mance results because our current simulated work-
load based on SPECweb99 contains static content
named by URLs of uniform form. The second sim-
pli�cation is that the browser proxy sends only one

type of hint to the cache managers. The current im-
plementation sends only cache miss hints as in the
example shown in Figure 4. Our current simulation
environment does not provide enough scale to con-
sider the use of latency miss hints as described in the
example of Figure 8.

5.4 Gateway

The implementation of the gateway provides the ba-
sic functionality described in Section 4.2.3. If the
gateway receives a request to cache content that has
never before been cache, the gateway will create a
new data object in the OceanStore infrastructure.
If the content has been previously cached, the gate-
way will simply update the data object with the new
content. The gateway, shown in Figure 13, uses the
HttpClient from the HTTP library to retrieve doc-
uments from the origin server. All other communica-
tion is performed using the OceanStore DOLR.
Currently, the gateway only caches content for

which it receives a request to cache. It does not
include any mechanisms, such as crawling, for proac-
tively �nding new content to cache. Adding function-
ality to crawl web pages when the gateway is under
light load could decrease the number of compulsory
cache misses su�ered by clients.
The gateway does, however, allow for the creation

of a number of small monitors to support push-
caching, as described in Section 4.5. Monitors are
timers with a small amount of state that de�nes
what content they are monitoring and the frequency
with which they are monitoring it. When the timer
elapses, the monitor triggers the gateway to check
that the cached copy of the content it is monitor-
ing is still current. During the check, the gateway
will either update the cache with new content or dis-
seminate a heartbeat that veri�es the old content is
still current. By requesting that the gateway per-
form this check periodically, the monitor can ensure
that content is actively pushed down the dissemina-
tion tree to replicas throughout the network. While a
full implementation of the monitor logic would deter-
mine which sites to monitor introspectively based on
its request stream, the current implementation mon-
itors a statically de�ned set of URLs at a statically

16



Requests/Results
OceanStore Read

Hints to
Cache Manager

OceanStore
Translator

HTTP−to−

HTTP Client HTTP TrafficHTTP ServerBrowser HTTP Traffic

N
et

w
or

k

Browser Proxy

Figure 12: Implementation of the Browser Proxy. The browser proxy communicates with the browser
using only standard HTTP. It communicates with the network using HTTP, OceanStore protocols, and
application-level messages.

Monitor

Monitor

Monitor

Monitor
Monitor

Monitor

Monitor

HTTP TrafficHTTP Client

Requests/Results
OceanStore Update

N
et

w
or

k

Requests to Insert/
Update Content

Monitor Logic

Gateway

Figure 13: Implementation of the Gateway. The gateway accepts requests to insert or update documents
in the cache. It retrieves the document from the origin server using standard HTTP and issues appropriate
OceanStore commands to update the cache.

17



determined time interval.
Because gateways potentially serve large numbers

of clients, there could be some concern that gateways
are bottlenecks, limiting how quickly new content is
brought into the cache. Note, however, that the work
performed by the gateway is trivially parallelizable.
The gateway performs the same sequence of steps for
each document: it fetches the document from the ori-
gin server, compares the retrieved content with the
cached content, and potentially updates the cached
content. The work of servicing a request for one URL
is completely independent of servicing a request for
another URL. The gateway implementation could be
trivially modi�ed to run on a cluster or a number
of nodes distributed throughout the infrastructure.
One challenge to implementing a gateway to run on
a number of nodes is ensuring that the nodes are not
duplicating work. This could be solved for a clus-
ter implementation by creating a front-end to �lter
requests to eliminate duplicates.
Finally, the gateway could reduce the amount of

data it updates by describing content changes with
a HTML di�erencing tool. Currently, if the gateway
detects that the content of a page has changed, it
submits an update to replace all of the old content
with the new content. This results in updates that re-
place much more data than necessary. Using HTML
di�erencing tools [9, 10] would reduce the size up-
dates which would in turn reduce the load imposed by
the gateway on inner rings. We have not attempted
to integrated a di�erencing tool because the current
OceanStore storage structure cannot eÆciently han-
dle the complicated updates it would produce. Work
is currently underway to augment the storage repre-
sentation with support for variable block sizes which
would allow the use of more sophisticated updates.
The unnecessarily large updates created by the sys-
tem have not posed a problem in our evaluation be-
cause we have focussed on hit latencies and the e�ec-
tiveness of the cache managers; we have not driven
the gateways into overload.

5.5 Cache Manager

The cache manager, as described in Section 4.2.4,
is the component that works greedily and introspec-

tively to improve the quality of service for clients in
the local area. By virtue of its responsibility, the de-
sign of the cache manager could be arbitrarily com-
plex, implementing complicated predictive models or
maintaining large amount of historical state. With
our implementation of the cache manager, we have
tried to keep the algorithms simple to focus on the
architecture of the larger system. If the design proves
to be e�ective, the cache manager could be extended
to include the latest predictive caching techniques.

In the current implementation, the cache manager
works greedily and without reference to any historical
behavior. When it receives a hint from a browser
proxy that some content could not be found locally,
the cache manager attempts to create a replica in
the local area. If it is unable to create a replica, it
forwards a request to the nearest gateway to insert
the document into the infrastructure.

The current implementation of the cache manager
can use one of two di�erent replica placement strate-
gies. Most simply, the cache manager will cache con-
tent locally, creating replicas of content on the lo-
cal node. As an example of a more advanced tech-
nique, the cache manager can also use the new replica
placement primitive described in Section 5.1. Be-
cause Tapestry uses a di�erent set of routing paths
for each di�erent object, using the advanced replica
placement primitive results in a cloud of cached con-
tent centered about the cache manager. Considering
other techniques for replica management is an area
of ongoing research.

6 Results

In this section, we describe a number of experiments
and their results performed to better understand the
strengths and weaknesses of our design. First, we de-
scribe the experimental setup including how we simu-
late load and model the network. We start to explore
the system by measuring the latency of the proxy.
We continue by measuring the overhead of locating
objects in Tapestry. We see that, unfortunately, the
implementation of Tapestry does not exhibit the lo-
cality that its design promises. Next, we compare
the document retrieval latency of Riptide to the la-

18



Browser Proxies
Hints from

OceanStore Replica
Management Commands

Insertion Requests
To Gateways

Cache Manager

N
et

w
or

k

Figure 14: Implementation of the Cache Manager. The cache receives hints from nearby browser proxies.
Depending on the type of hint, the cache manager forwards a request to a gateway or issues commands to
the underlying system to direct the number and placement of replicas.

tency of a proxy cache. The goal of this comparison
is not report an exact latency for each system; in fact,
we do not have an infrastructure suitable for running
such tests under truly realistic conditions. Instead,
we hope to show with these measurements, that the
Riptide web cache can deliver content to clients with
reasonable latency. Next, we run experiments that
demonstrate the real strengths of the Riptide archi-
tecture including automatic service and replica lo-
cation and the ability to adapt to a changing net-
work without client con�guration changes. Finally,
we present a preliminary exploration of how Riptide
could be used to support push-caching.

6.1 Experimental Setup

To drive the system, we applied a simulated load gen-
erated by a modi�ed version of the client load gen-
erator used in [42]. The traÆc generator continually
requests documents using a distribution speci�ed by
the SPECweb99 suite [8]. Between each request, the
load generator inserts a �xed 10 ms of think time.
The load generator uses a number of machines and
threads to simulate many clients. The �le set size is
over 1.75 gigabytes, much larger than the available
cache space available at any node.

We place an additional restriction on the
SPECweb99 �le set that only 80% of the documents
are cacheable. This number reects the average

cacheability used in the Web Polygraph's web caching
benchmark PolyMix-3 workload [33]. We also insert
an average of 2.5 seconds of server think time when
requesting a document from the origin server, as is
done in the PolyMix-3 workload.

All experiments were run on top of simulated net-
works constructed using the transit-stub model of
GT-ITM [48]. We augment the GT-ITM model
with bandwidth numbers as follows. All stub-to-stub
edges are 100 Mb/s, all stub-to-transit edges are 1.5
Mb/s, and all transit-to-transit edges are 45 Mb/s.
These values were chosen to model Fast Ethernet,
T1, and T3 connections respectively. Intra-stub link
latencies varied from 1{7 ms; latencies for interdo-
main links were 10{30 ms.

Each graph created using the GT-ITM network
model contained 1100 nodes, and each stub domain
contained on average 100 nodes. The nodes perform-
ing OceanStore-speci�c roles were distributed across
the (simulated) wide-area. To simulate a small or-
ganization, we placed 95 nodes serving various web
caching roles in a single stub. Experimental results
were similar all on generated networks; we present
results from a single topology.

The experimental testbed used for all experiments
consists of a local cluster of forty-two machines at
Berkeley. Each machine in the cluster is a IBM
xSeries 330 1U rackmount PC with dual 1.0 GHz
Pentium III CPUs, 1.5 GB ECC PC133 SDRAM,

19



and two 36 GB IBM UltraStar 36LZX hard drives
connected via gigabit Ethernet.

The web server hosting all of the content for the
experiments was hosted on the management node of
the cluster, reachable from the cluster in under 0.1
ms.

Finally, to compare Riptide against an existing,
commonly-understood cache architecture, we con-
structed a simple proxy cache that implements LRU
replacement algorithm. For experiments using the
proxy cache, the cache is deployed in the stub do-
main with the clients, and the clients are con�gured
to connect directly to the proxy.

6.1.1 Artifacts of the OceanStore DOLR

In many of the sections below, experimental results
will be presented for two di�erent DOLR con�gura-
tions. In one con�guration, we use only Tapestry for
DOLR; in the other con�guration, we use Tapestry
augmented by attenuated Bloom �lters for DOLR.
We present results from both con�gurations for sev-
eral reasons.

The current implementation of Tapestry should
be considered preliminary. While the APIs are sta-
ble, a great deal of work remains to provide consis-
tently good routing. In the current implementation,
Tapestry especially has problems with locality. It
frequently routes through other domains to �nd re-
sources that are actually stored in the local domain.
It also tends to take several hops to locate an object
that is only one physical hop away. These are rec-
ognized problems by the Tapestry development team
and the current re-implementation e�ort is focusing
on the locality issues. The lack of locality negatively
impacts the results by making objects and services
appear much farther away than they really are.

To combat the locality issues of the current
Tapestry implementation, we sometimes augment
Tapestry with attenuated Bloom �lters. The Bloom
�lter routing optimization is especially eÆcient at lo-
cating nearby replicas and services quickly. The re-
sults of the experiments that use the Bloom �lters
hint at the performance that could be attained as
Tapestry becomes more eÆcient.

Size (bytes) Direct (ms) Proxy (ms)

1024 1.35 23.30
4096 1.70 24.07
10240 1.90 24.40
40960 5.25 25.35
102400 9.90 38.81
409600 36.00 63.35

Table 1: Proxy Latency: The proxy imposes an over-
head of slightly more than 20 ms on requests for small
objects. Much of this delay is due to a timeout in the
NBIO library.

6.2 Proxy Latency

All requests for content pass through the browser
proxy. Consequently, it is important that the over-
head imposed by the proxy during protocol transla-
tion and secure hash computation be minimal. To
measure the overhead of the proxy, we con�gured
the browser proxy to act as a transparent proxy, a
proxy that retransmits requests without modi�ca-
tion. Speci�cally, when con�gured as a transparent
proxy, the browser proxy will forward the request to
the origin server without checking Riptide for cached
content. We then measured the latency to retrieve
content of variable size with a direct connection to
the network and through the proxy.

Table 1 presents the average latency of retrieving
documents through the proxy. Each data point is
the average of latency of twenty requests. The over-
head imposed by the proxy when requesting small
object is, on average, slightly more than 20 ms. We
have found that 20 ms of the latency is an artifact
of a timeout used in the NBIO implementation of
non-blocking networking sockets. As we decrease the
timeout, the latency of the proxy drops correspond-
ingly at a cost of increased CPU load. Balancing
proxy latency with CPU load, we have left the la-
tency imposed by the timeout at 20 ms for the re-
mainder of the experiments. We hope this issue will
be resolved with the widespread release of Java 1.4
with its native support for non-blocking I/O. Except-
ing the latency imposed by the non-blocking sockets
implementation, the overhead of the proxy is mini-
mal.

20



0 50 100 150 200 250

Latency (ms)

 0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e 

of
 P

in
gs

w
it

h 
L

at
en

cy
 B

el
ow

Proxy Cache
Riptide with Bloom Filters
Riptide without Bloom Filters

Figure 15: Service Location Overhead: We compare
the latency to reach the proxy cache with the latency
to reach the cache manager both with and without
bloom �lters. Using Tapestry to locate services is
more costly than contacting the service directly.

6.3 Service Location Overhead

Next, we wanted to examine the overhead of using
Tapestry to locate services dynamically. While there
are no service location operations in the critical path
for reading a document from the cache, it is an in-
teresting metric that hints at the overhead imposed
by Tapestry in locating objects. To measure the
overhead, each client would ping a service provider.
When measuring the latency to the proxy cache, a
client would contact the proxy cache speci�ed by
their con�guration �le. When measuring the latency
to the cache manager, a client would use Tapestry to
locate a nearby cache manager; the client is not con-
�gured to know the location of any cache manager.

Figure 15 shows the distribution of ping la-
tencies. Not surprisingly, clients with foreknowl-
edge of the location of their service provider can
reach that provider faster than those that have no
such foreknowledge. Clients can usually reach the
nearby proxy cache in under 50 ms; routing through
Tapestry, clients regularly see latencies up to 200 ms.
Notice, that by using bloom �lters to aid in service
discovery, the latency to reach the service provider
drops below 50 ms for some clients.

0 100 200

Latency (ms)

 0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f 

C
ac

he
 H

it
s

w
it

h 
L

at
en

cy
 B

el
ow

Proxy Cache
Riptide With Bloom Filters
Riptide Without Bloom Filters

Figure 16: Hit Latency: A cumulative distribution
function of the latencies to locate and retrieve a doc-
ument from the web cache. Latencies are presented
for the proxy cache and Riptide with and without
bloom �lters.

6.4 Cache Latency

Next, we compare the latency to retrieve documents
from the Riptide web cache against the latency to
retrieve documents from a traditional proxy cache.
While the strength and emphasis of our design is
adaptability and ease of maintenance and con�gu-
ration and not low hit latency, it is important that
it perform reasonably well. The experiment below
is designed to provide a fair comparison with the
proxy cache. Speci�cally, the proxy cache is not
measured in an overload situation. Obviously, if
driven with suÆcient load, the distributed Riptide
web cache could perform better than the single-node
proxy cache. Our intent with this experiment is to
measure the cost of retrieving content when neither
system is su�ering from under-provisioning.
Figure 16 displays the cumulative distribution

functions (CDF) of the latency to retrieve documents
from the proxy cache and Riptide. The cache man-
ager uses the simple primitive to create replicas on
the node hosting the cache manager. Using the proxy
cache, 80% of hits are returned in under 50 ms.
Clients using a proxy cache see low latencies because
they know the location of the proxy cache and can
route directly to the cache.
Using Riptide without Bloom �lters, clients need to

wait almost 120 ms to see 80% of the hits. Most of the
di�erence in latency can be attributed to latency of

21



the extra hops required to locate documents through
Tapestry.

Allowing Riptide to use bloom �lters to aid in doc-
ument location improves latency. Figure 16 shows
that when using bloom �lters, a number of objects
can retrieved with latencies rivaling the proxy cache
scheme.

The reader may notice that the CDFs for Riptide in
Figure 16 do not reach 1.0. This is an artifact of im-
plementing OceanStore and Riptide in the garbage-
collected Java programming language. All current
production Java Virtual Machines (JVMs) we have
surveyed use so-called \stop the world" collectors, in
which every thread in the system is halted while the
garbage collector runs1. Any requests currently being
processed when garbage collection starts are stalled
for on the order of one hundred milliseconds. This
penalty can be multiplied if a request is stalled by
garbage collection on several nodes as it is routed
through the infrastructure. The performance prob-
lems introduced by garbage collection are much more
noticeable with Riptide than the proxy cache because
Riptide is running on top of a much larger software
stack that forces much more garbage collection.

6.5 Automatic Service Location and
Load Balancing

One of the unique features of Riptide is its ability to
automatically �nd and use new resources as they are
added to the network. To demonstrate this feature,
we performed several experiments.

First, we brought several cache managers on-line
while the system was running and measured the num-
ber of requests each manager received over time. The
system begins executing with one cache manager; a
second cache manager is added after 5 minutes; and
a third cache manager is installed after 10 minutes.
Figure 17 shows the number of hints received by each
cache manager during each time interval. As the sys-
tem warms up, the �rst cache manager sees an in-
creasing request rate. When the second cache man-
ager comes on line during the 30th time interval, it

1We currently use JDK 1.3 for Linux from IBM. See

http://www.ibm.com/developerworks/java/jdk/linux130/

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Time Interval

0

50

100

150

H
in

ts
 R

ec
ei

ve
d

Cache Manager 1
Cache Manager 2
Cache Manager 3

Figure 17: Automatic Service Location: This �gure
shows how requests to cache managers are rerouted
as new services enter the network. By using Tapestry
to locate services, the system automatically �nds the
closest provider, even as providers enter and leave the
network. Each time interval is 10 seconds.

is closer to all of the clients then the �rst cache man-
ager. Consequently, all of the traÆc shifts to the
second cache manager. When the third cache man-
ager begins to provide service during the 60th time
interval, it is closer to almost half of the clients and
thus automatically begins to receive roughly half of
the client traÆc. It is important to note that as new
cache managers are added to the system, no con�gu-
ration changes are made anywhere in the system.

In the second experiment, we simulated a ash
crowd, a sudden increase in requests, for a single doc-
ument. In response to the ash crowd, the cache
manager creates additional replicas of the popular
content. We measure the number of requests that
each replica receives. The system begins with a sin-
gle copy of the document. After several minutes, a
second replica is created; a third replica is created
after several more minutes. Browser proxies, using
Tapestry, discover the new replicas as they are cre-
ated. Figure 18 shows the result of this experiment.
Each replicas begins to receive and service requests
as soon as it is created. That each replica does not
receive an equal proportion of the requests is an arti-
fact of the experimental setup. Because we simulate
the ash-crowd using a small number of hosts, the
load generators apply load from only �ve locations
in the network. Because requests originate from only

22



0 5 10 15 20 25 30 35 40 45 50 55 60

Time Interval

0

100

200

300

400

R
eq

ue
st

s 
Se

rv
ic

ed

Replica 1
Replica 2
Replica 3

Figure 18: Automatic Replica Location: This �gures
shows how requests are routed to replicas as they en-
ter the system. By using Tapestry, the system auto-
matically discovers new replicas as they are created.
Each time interval is 10 seconds.

several locations, Tapestry does not route requests to
replicas uniformly.

Finally, cache managers also have the exibility to
execute a wide variety of powerful replica placement
policies. To explore the e�ects of using a di�erent
policy, we modi�ed the cache manager to use the ad-
vanced replica placement primitive discussed in Sec-
tion 5.1. Because the primitive chooses the node for
the new replica based on the document-speci�c rout-
ing tree, using the advanced primitive results in a
cloud of cached content distributed among a num-
ber of nodes with the cache manager in the center of
the cloud. Consequently, the load for serving content
from the cache is distributed across the nodes in the
cloud. Figure 19 shows how load can be distributed
by using the advanced replica placement primitive. In
the �gure, nodes are sorted by the number of requests
that they receive. Nodes receive a varying number of
requests because they host replicas of varying pop-
ularity. The cache manager has spread the load of
serving cache requests across a number of nodes in
the infrastructure. This is a clear improvement over
the simple alternative; that alternative would force a
single node to serve all of the requests handled by the

Network Node

0

100

200

300

N
um

be
r 

of
 R

ea
d

R
eq

ue
st

s 
Se

rv
ic

ed

Figure 19: E�ectiveness of Replica Placement Strat-

egy: The histogram shows the number of requests
satis�ed by a number of nodes in the network over a
150 second period. The nodes on the x-axis are sorted
by the number of requests received. The units on the
x-axis are left unmarked because the exact identity
of the nodes is irrelevant. By using the advanced
replica placement primitive, the cache manager has
spread the load of serving cache requests across a
number of nodes in the infrastructure. This is a clear
improvement over the simple alternative; that alter-
native would force a single node to serve all of the
requests handled by the collection of nodes shown in
the �gure.

23



collection of nodes shown in the �gure.

6.6 Viability of Push-Caching

To better understand the viability of push-caching,
we monitored the main page of several popular con-
tent providers. We fetched the current content ev-
ery two minutes and compared it against the previ-
ous version of the page. If it had been updated, we
stored the page. We collected the content updates for
10 popular sites from July 18, 2002 to July 30, 2002.
The sites pro�led served general news, �nancial news,
sports news, or tech-related information.
We analyzed the data to determine how much of

the page was updated and how frequently. The re-
sults of this analysis, which we call the update pro-

�le, appear in Figures 20 and 21. The top curve in
each update pro�le shows the size of the document
in bytes. The bottom curve shows the time inter-
vals during which the content was change and how
many bytes of content were changed. To compute the
number of bytes changed, we simply used Unix's diff
tool. Because diff uses a line-based comparison, this
computation is somewhat conservative. Using tools
from current research on HTML diÆng [1, 24] would
provide more accurate measurements.
Figure 20 presents the update pro�le of several sites

that appear to be good candidates for push-caching.
These sites update their content periodically and do
not modify the metadata or HTML code between
content updates. This means that the content, once
pushed down the dissemination tree to the replicas,
can be used to serve a number of requests. Further-
more, the number of bytes changed when the content
is updated is small. This means that only a small
di� needs to be pushed down the dissemination tree
to update the replicas.
Figure 21 presents the update pro�le typical of the

many sites that may not bene�t from push-caching.
This update pro�le shows that the content of the doc-
ument had changed every time the document was
checked. Unfortunately, push-caching is not e�ective
if the page changes every time it is accessed. How-
ever, a manual inspection of the changes that occur
on reload reveal that the content that changes is re-
lated to advertising or other auxiliary content. This

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time in Hours From Midnight

0

20000

40000

60000

B
yt

es

Rate of Change of http://www.nytimes.com/

Document Size
Bytes Updated

Figure 21: Update Pro�le of

http://www.nytimes.com/: The update pro�le
of this site shows that content is changed every time
the page is requested. Manual inspection shows that
the changes are usually related to advertising and
other auxiliary content.

indicates, encouragingly, that if the sites that exhibit
continuous document change used other models, such
as those used by the sites pro�led in Figure 20, then
they too could be good candidates for push-caching.

6.7 Push-Caching to Reduce
Interdomain Bandwidth

We previously described how the use of OceanStore's
dissemination tree can reduce the bandwidth con-

4 8 16 32

Number of Replicas

0

1

2

3

4

5

St
re

ss
 A

cr
os

s 
In

te
rd

om
ai

n 
L

in
k

4 8 16 32

Number of Replicas

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r 

of
 I

nt
er

do
m

ai
n

C
ro

ss
in

gs
 p

er
 R

ep
lic

a

Without Bloom Filters

With Bloom Filters

Figure 22: Reducing Interdomain Bandwidth with the

Dissemination Tree: Binding replicas together in a
dissemination tree reduces the amount of interdomain
bandwidth required.

24



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time in Hours From Midnight

0

10000

20000

30000

40000

B
yt

es

Rate of Change of http://www.cnn.com/

Document Size
Bytes Updated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time in Hours From Midnight

0

10000

20000

30000

40000

50000

B
yt

es
Rate of Change of http://money.cnn.com/

Document Size
Bytes Updated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time in Hours From Midnight

0

10000

20000

30000

B
yt

es

Rate of Change of http://www.cnnsi.com/

Document Size
Bytes Updated

Figure 20: Update Pro�le of Several Sites: These update pro�les show that content is updated only period-
ically, which allows for content to be shared, and that only a small portion of the content is updated at any
time, which means that di�s required to update replicas are small compared to the document size. Notice
that the �nancial site shows a much greater rate of change when the markets are open.

sumed on interdomain links by pushing updates to
copies of content. Figure 22 shows the number of
interdomain crossings used in the creation of a dis-
semination tree among a variable number of replicas.
The graphs show that the dissemination tree is of-
ten able to save bandwidth by serving multiple repli-
cas with a single interdomain crossing. If clients are
accessing documents cached in a number of replicas
bound together in a dissemination tree, updates can
be pushed to these clients with many fewer domain
crossings than if each client was required to contact
the origin server directly. Results show that the dis-
semination tree becomes more eÆcient as the number
of replicas increases. The tree does, however, cross
the interdomain links more times than necessary. The
dissemination tree should be better able to optimize
the number interdomain crossing as Tapestry is bet-
ter able to locate local resources.

6.8 Push-Caching to Reduce
Server Load

To study the e�ects of push-caching on server load
and client-perceived latency, we built a simple web
server that could simulate restricted bandwidth on its
outbound link. A variable number of clients request
the document from the server. In the base con�g-
uration, no caching is performed. Consequently, all
requests must be serviced by the origin web server.

As the number of clients and the number of requests
increases, the origin's servers network link becomes
saturated and the response latency increases reect-
ing queueing delays over the constrained link. In
the optimized con�guration, Riptide is used in the
push-caching mode. Monitors are installed at the
gateway to monitor the content hosted by the web
server. When the gateway observes that content has
changed, it updates the content in the cache and
pushes that update to all other replicas. Clients �rst
check the cache for a current copy of the document.
If the gateway is performing well, clients will �nd an
up-to-date copy of the document in the cache. If the
client could not �nd a current copy of the document,
it retrieves the document from the server.

For the results presented below, the document is
considered stale after 5 seconds; the content of the
document actually changes every 30 seconds. The
downstream bandwidth of the web server is limited
to 10 Mbit/s. The size of the document is 16 KB.

Figure 23 shows the CDF of the client-perceived la-
tency for requesting documents from the bandwidth-
limited server. Without push-caching, all requests
must go to the origin server and responses are de-
layed by queueing e�ects at the constrained link. As
clients issue more simultaneous requests, the e�ects
of queueing on latency increase. With push-caching,
most of the requests are satis�ed by local replicas
with little latency. When a replica is stale and un-

25



0 100 200 300 400 500 600 700 800 900 1000

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e 

of
 R

eq
ue

st
s

Sa
ti

sf
ie

d 
in

 T
im

e

Latency Distribution Requesting a
Document over a Slow Link

Without Push Caching

10 Clients
15 Clients
20 Clients
25 Clients

0 100

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e 

of
 R

eq
ue

st
s

Sa
ti

sf
ie

d 
in

 T
im

e

Latency Distribution Requesting a
Document Over a Slow Link

With Push Caching

10 Clients
15 Clients
20 Clients
25 Clients

Figure 23: Request Latency Over a Slow Link: The graph on the left shows the latency when retrieving
documents from the server in the system without push-caching. Once the link is saturated, the response
time increases linearly with the number of clients. The graph on the right shows the latency when retrieving
documents from a server in the system using Riptide's push-caching functionality. The latency of retrieving
the document does not increase because updated are pushed down the dissemination tree to the replicas.
Note the scale x-axis is 10 times smaller on the graph for the system using push-caching.

26



5 10 15 20 25

Number of Clients

0

200

400

600

800

R
eq

ue
st

s 
Se

rv
ic

es
 P

er
 S

ec
on

d

Request Throughput versus Number of Clients

With Push-Caching
Without Push-Caching

Figure 24: Request Throughput: The system using
push-caching is able to satisfy many more requests
per second than the base system. The graph shows
the average and standard deviation of 200 seconds of
simulation.

able to satisfy the request, the system forwards the
request to the origin server. However, because most
traÆc is absorbed by the caches, the latency of the
response from the origin server is much lower. Fur-
thermore, the results are pushed to the other replicas
in the system to serve client requests.

In addition to serving requests much faster, push-
caching enables the system to service many more re-
quests per second. Without push-caching, every re-
quest consumes some bandwidth over the network
link that is the constrained resource in this system.
With push-caching enabled, the bandwidth to service
most requests comes from the relatively bandwidth-
unconstrained stub domain. Only a few requests con-
sume bandwidth over the interdomain link. By shift-
ing the consumption of resources into the local area,
the throughput of the system using push caching is
much hight, as shown in Figure 24.

7 Related Work

There has been a great deal of research on web
caching. Surveys by Wang [40] and Barish and
Obraczka [2] show the number and variety of ideas
explored. Hierarchical caching architectures became

popular with the introduction of the Harvest [5] and
Squid [44] proxy caches. Another example of hier-
archical caching is the Adaptive Web Caching [49]
system.
Attempts to distribute load among web caches re-

sulted in a number of protocols to allow caches to
query known neighbor caches in the hierarchy di-
rectly, without disturbing the parent. The Internet
Cache Protocol (ICP) [46, 45] was the �rst proposal
and used small UDP messages to query neighboring
caches. If ICP cannot locate a neighboring cache will-
ing to serve the content, it propagates the request up
the hierarchy.
Another group of projects attempted to tie to-

gether small sets of caches at the institutional level.
The Cache Array Routing Protocol (CARP) [39] uses
a hashing function to route requests directly to one
of a number of loosely coupled proxies. The CRISP
web caching service [14] proposed to use a central-
ized directory for each cluster of proxies. A user's
proxy would contact the directory to �nd of copy of
the cached content. The Cachemesh project [41] pro-
posed to use communication among proxies to de-
velop cache placement and routing strategies. Cache
Digests [34] and the Summary Cache [12] use Bloom
�lters to store a summary of the directory at each
node. Proxies consult the bloom �lters stored locally
to �nd another proxy which (with high probability) is
caching the document. Proxies periodically exchange
information to update the Bloom �lters. Note that
in all of these proposals, there is a certain level of ad-
ministrative coordination required to create clusters
of proxies to participate in the schemes and there
is some overhead required to keep the directories or
hash functions current.
The Squirrel web cache [18] represents an inter-

esting point in the design space. Built on top of the
PASTRY [36] routing infrastructure, it builds a peer-
to-peer caching network. The resources used for stor-
ing and delivering data come from client machines
participating in the cache.
Akamai [20] has developed a Web cache network

using the ideas of consistent hashing. The network
distributes the load of serving content to prevent hot
spots. The properties of consistent hashing allow
the network to scale gracefully and use resources ef-

27



�ciently.

Finally, there have been several attempts to help
clients locate a proxy server and con�gure a browser
to use the proxy [15, 7]. As far as we know, none of
these proposals have become standards.

8 Future Work

Several aspects of Riptide deserve further study. The
work presented in this paper has only begun to look
at the advantages in bandwidth and latency of push-
ing content changes to replicas. We would also like to
examine additional replica management strategies for
cache managers. Of particular interest is strategies
that allow a single manager to detect \hot" docu-
ments and to create many replicas for a single docu-
ment. Further, we would like to study the architec-
ture as it is deployed across a wider simulated area;
speci�cally, we would like to simulate the architecture
across multiple stubs to simulate cross-organization
cooperative caching. Finally, OceanStore has provi-
sions for versioning, namely keeping every version of
every document. In Riptide, this will enable Web
browsers to perform time travel { clients will be able
to look at the web at any point in the past, start-
ing from the point that a gateway �rst imported the
document into OceanStore.

9 Conclusion

In this paper, we present the Riptide distributed
web caching architecture. Riptide is constructed on
top of OceanStore and exploits mechanisms for de-
centralized object location and for pushing updates
to replicas. This architecture requires minimal con-
�guration, recovers transparently from network and
server failures, and can be scaled as necessary to meet
client demands. We measured the performance of a
functional prototype on a simulated workload. We
showed that the system is able to adapt as new ser-
vices are added to the network and to distribute load
across nodes in the network. Riptide incurs some-
what increased latency over a simple proxy-based ar-
chitecture, but this increase in latency is modest and

more than o�set by the ability of the system to man-
age itself and adapt to adverse server loads.

References

[1] Gaurav Banga, Fred Douglis, and Michael Rabi-
novich. Optimistic deltas for WWW latency reduc-
tion. In USENIX Technical Conference, pages 289{
303, 1997.

[2] Greg Barish and Katia Obraczka. World wide web
caching: Trends and techniques, 2000.

[3] B. Bloom. Space/time trade-o�s in hash coding with
allowable errors. In Communications of the ACM,
volume 13(7), pages 422{426, July 1970.

[4] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and
M. Rabinovich. Web proxy caching: the devil is in
the details, 1998.

[5] Anawat Chankhunthod, Peter B. Danzig, Chuck
Neerdaels, Michael F. Schwartz, and Kurt J. Wor-
rell. A hierarchical internet object cache. InUSENIX
Annual Technical Conference, pages 153{164, 1996.

[6] Yan Chen, Randy H. Katz, and John D. Kubitowicz.
SCAN: A dynamic, scalable, and eÆcient content
distribution network. In Proceedings of the Interna-

tional Conference on Pervasive Computing, August
2002.

[7] Netscape Corporation. Naviga-
tor proxy auto-con�g �le format,
http://wp.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-
live.html.

[8] Standard Performance Evalua-
tion Corporation. Specweb99,
http://www.specbench.org/osg/web99/.

[9] Fred Douglis and Thomas Ball. Tracking and viewing
changes on the web. In USENIX Annual Technical

Conference, pages 165{176, 1996.

[10] Fred Douglis, Thomas Ball, Yih-Farn Chen, and
Eleftherios Koutso�os. The ATT internet di�erence
engine: Tracking and viewing changes on the web.
World Wide Web, 1(1):27{44, 1998.

[11] Bradley M. Duska, David Marwood, and Michael J.
Feeley. The measured access characteristics of world
wide web client proxy caches. In USENIX Sympo-

sium on Internet Technologies and Systems, 1997.

28



[12] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z.
Broder. Summary cache: a scalable wide-area web
cache sharing protocol. IEEE/ACM Transactions on

Networking, 8(3):281{293, 2000.

[13] Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. Web
prefetching between low-bandwidth clients and prox-
ies: Potential and performance. InMeasurement and

Modeling of Computer Systems, pages 178{187, 1999.

[14] S. Gadde, M. Rabinovich, and J. Chase. Reduce,
reuse, recycle: an approach to building large internet
caches. In The Sixth Workshop on Hot Topics in

Operationg Systems, pages 93{98, 1997.

[15] Paul Gauthier, Josh Cohen, Martin Dunsmuir, and
Charles Perkins. Web proxy auto-discovery proto-
col, http://www.web-cache.com/Writings/Internet-
Drafts/draft-ietf-wrec-wpad-01.txt.

[16] James Gwertzman and Margo Seltzer. An analysis
of geographical push-caching. 1997.

[17] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao.
Distributed data location in a dynamic network. In
Proc. of ACM SPAA, 2002.

[18] Sitaram Iyer, Antony Rowstron, and Peter Druschel.
Squirrel: a decentralized peer-to-peer web cache.

[19] Kirk L. Johnson, John F. Carr, Mark S. Day, and
M. Frans Kaashoek. The measured performance of
content distribution networks. In Proceedings of the

5th International Web Caching and Content Delivery

Workshop, 2000.

[20] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees. distributed caching protocols for re-
lieving hot spots on the world wide web. In Proc. of

ACM STOC, May 1997.

[21] Balachander Krishnamurthy, Craig Wills, and Yin
Zhang. On the use and performance of content dis-
tribution networks. In Proceedings of the ACM SIG-

COMM Internet Measurement Workshop, 2001.

[22] Tom M. Kroeger, Darrell D. E. Long, and Je�rey C.
Mogul. Exploring the bounds of web latency reduc-
tion from caching and prefetching. In USENIX Sym-

posium on Internet Technologies and Systems, 1997.

[23] J. Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In Proc. of ASPLOS.
ACM, 2000.

[24] Je�rey C. Mogul, Fred Douglis, Anja Feldmann, and
Balachander Krishnamurthy. Potential bene�ts of

delta encoding and data compression for HTTP. In
SIGCOMM, pages 181{194, 1997.

[25] NIST. FIPS 180-1 secure hash standard. April 1995.

[26] Venkata N. Padmanabhan and Je�rey C. Mogul. Us-
ing predictive prefetching to improve World-Wide
Web latency. In Proceedings of the ACM SIGCOMM

'96 Conference, Stanford University, CA, 1996.

[27] D. Povey and J. Harrison. A distributed internet
cache. In 20th Australian Computer Science Confer-

ence, 1997.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In Proceedings of SIGCOMM. ACM, August 2001.

[29] S. Rhea and J. Kubiatowicz. Probabilistic location
and routing. In Proc. of INFOCOM. IEEE, June
2002.

[30] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao,
H. Weatherspoon, and J. Kubiatowicz. Maintenance
free global storage in oceanstore. In Proc. of IEEE

Internet Computing. IEEE, September 2001.

[31] P. Rodriguez, C. Spanner, and E. Biersack. Web
caching architectures: hierarchical and distributed
caching, 1999.

[32] Pablo Rodriguez and Ernst Biersack. Continuous
multicast push of web documents over the internet.
IEEE Network Magazine, 12(2):18{31, March 1998.

[33] Alex Rousskov, Matthew Weaver, and Duane
Wessels. Polymix-3 workload, http://www.web-
polygraph.org/docs/workloads/polymix-3/.

[34] Alex Rousskov and Duane Wessels. Cache di-
gests. Computer Networks and ISDN Systems,
30(22-23):2155{2168, 1998.

[35] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large scale
peer-to-peer systems. In Proc. of IFIP/ACM Mid-

dleware, November 2001.

[36] Antony Rowstron and Peter Druschel. Pastry: scal-
able, distribute object location and routing for large-
sclale peer-to-peer systems. In IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms,
pages 329{350, November 2001.

[37] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceed-

ings of SIGCOMM. ACM, August 2001.

29



[38] Renu Tewari, Michael Dahlin, Harrick M. Vin,
and Jonatoan S. Kehy. Design considerations for
distributed caching on the internet. In Interna-

tional Conference on Distributed Computing Sys-

tems, pages 273{284, 1999.

[39] V. Valloppillil and K. Ross. Cache array routing
protocol (carp), internet draft.

[40] Jia Wang. A survey of web caching schemes for the
internet, 1999.

[41] Z. Wang and J. Crowcroft. Cachemesh: a distributed
cache system for the world wide web. In Web Cache

Workshop, 1997.

[42] M. Welsh, D. Culler, and E. Brewer. SEDA: An ar-
chitecture for well-conditioned, scalable internet ser-
vices. In Proc. of ACM SOSP, October 2001.

[43] Matt D. Welsh. Nbio: Non-blocking I/O for
Java, http://www.cs.berkeley.edu/ mdw/proj/java-
nbio/index.html.

[44] D. Wessels. The squid internet object cache
http://squid.nlanr.net/Squid/.

[45] D. Wessels and K. Cla�y. Application of internet
cache protocol (ic), version 2, rfc 2187.

[46] D. Wessels and K. Cla�y. Internet cache protocol
(icp), version 2, rfc 2186.

[47] Duane Wessels and K Cla�y. Evolution of the
nlanr cache hierarchy: Global con�guration chal-
lenges http://www.nlanr.net/Papers/Cache96/.

[48] E. Zegura, K. Calvert, and S. Bhattacharjee. How
to model an internetwork. In Proc. of INFOCOM,
1996.

[49] Lixia Zhang, Scott Michel, Khoi Nguyen, Adam
Rosenstein, Sally Floyd, and Van Jacobson. Adap-
tive web caching: Towards a new global caching
architecture. In 3rd International WWW Caching

Workshop, June 1998.

[50] B. Zhao, A. Joseph, and J. Kubiatowicz. Tapestry:
An infrastructure for fault-tolerant wide-area loca-
tion and routing. Technical Report UCB//CSD-01-
1141, U. C. Berkeley, 2001.

30


