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Abstract— We analyze the characteristics of overlay routing
networks generated by selfish nodes playing competitive network
construction games. We explore several networking scenarios—
some simplistic, others more realistic—and analyze the resulting
Nash equilibrium graphs with respect to topology, performance,
and resilience. We find a fundamental tradeoff between per-
formance and resilience, and show that limiting the degree
of nodes is of great importance in controlling this balance.
Further, by varying the cost function, the game produces widely
different topologies; one parameter in particular—the relative
cost between maintaining an overlay link and increasing the path
length to other nodes—can generate topologies with node-degree
distributions whose tails vary from exponential to power-law.
We conclude that competitive games can create overlay routing
networks satisfying very diverse goals.

I. INTRODUCTION

Overlay routing networks [1], [2], [3], [4], [5], [6], [7] have
become increasingly popular over the last few years. They
form supporting technology for diverse application domains
such as multicast, object location, and secure data dissemi-
nation. Overlays are easy to deploy and flexible, and can be
resilient to faults. To achieve desired properties, however, most
overlay systems assume that nodes cooperate with one another
by following well-defined protocols, regardless of the costs
incurred.

In reality, however, nodes may behave selfishly—seeking
to maximize their own benefit. For instance, when parties in
different domains utilize their own resources (overlay nodes)
to participate in an overlay network, they have clear incentives
to create links that maximize the benefit to their domain,
possibly at the expense of globally optimum behavior. It is
an open question whether these networks can have desirable
global properties, in spite of the distinct local interests of the
participating nodes.

Inspired by the game-theoretical model in [8], we study
selfishly constructed networks by modeling network formation
as a non-cooperative game. In this game, each node chooses its
overlay neighbors to maximize its benefit and to minimize its
linking cost. Consequently, nodes can have conflicting goals:
on the one hand, they want to have low cost paths to other
nodes in the network by establishing more links, and on the
other hand, they may not want to establish many links, which
may turn out to be costly. The outcome of the game is a

network topology, which is a Nash equilibrium1.
In this paper, we simulate the network creation game in two

different physical domains. The first involves a fully-connected
physical topology with unit distance between nodes; this
exposes the non-trivial effects of linking cost. The second in-
volves more realistic topologies and physical limits—allowing
an analysis of a practical overlay construction protocol. Our
cost model extends the one suggested in [8] in several ways:
the cost to establish a link is a general function, distance can
represent any metric such as latency, and the neighbors of a
node can be constrained.

We characterize the Nash equilibria obtained with metrics
such as stretch, resilience to failures and attacks, and node
degree distribution, and link these properties with variations
in the game. We show that variations in a single parameter—
the relative cost between maintaining an overlay link and
increasing the path length to other nodes—can generate diverse
topologies. We find a fundamental tradeoff between perfor-
mance and resilience in the selfishly constructed networks.
We show that varying parameters in the game model, such
as limiting the degree of nodes, is of great importance in
controlling this balance. A surprising fact, for example, is that
by restricting the maximum number of links any node can
establish, the game produces networks that are more resilient
to attacks. Due to the selfish nature of the game, when degree
is unrestricted, a few nodes establish many links, and most
of the others free ride, by linking to the highly connected
nodes. We conclude that, given the appropriate setting for the
game, desirable global properties may be obtained by selfish
optimization by local nodes.

The rest of the paper is organized as follows. In Section II
we discuss related work. Section III discusses details of the
network creation game, while Section IV describes the domain
of our investigation. In Section V we explore properties of
the networks formed by the games. Then, Section VI probes
the resilience of these networks. We summarize the results
and discuss directions for future work in Section VII. Finally,
Section VIII concludes.

II. RELATED WORK

There has been considerable research on overlay routing
networks such as RON [3], CAN [4], Chord [5], Pastry [6], and

1A Nash equilibrium is a set of strategies with the property that no
player can benefit by changing its strategy, while the other players keep their
strategies unchanged [9].

1



�

� �

�

(a)

�

� �

�

(b)

Fig. 1. Overlay routing networks. The ellipses are physical nodes and the rectangles are overlay nodes labeled A, B, C, and D. The first
overlay network (a) has virtual links AB, BC, and CD. In (a), A’s messages are sent to D through B and C. The path length is 6 physical
hops. When A decides to add a link to D, the resulting network is the network (b). A incurs cost to establish this new link, but the distance
reduces to 2 physical hops due to the virtual link AD. This example shows the importance of selections of links in individual nodes.

Tapestry [7]. These overlay protocols assume obedience to the
protocol and ignore participants’ incentives. Our work starts
from the assumption that nodes are selfish and characterizes
the networks created by such local optimization procedures.
Overlays such as Narada [1] and Gossamer [2] use a mesh
optimization process, which can be modeled as a specialization
of our game. The detailed description of these protocols is
presented in Section III-C.

The open problem of the characteristics of overlay networks
created by selfish nodes, which is our focus of the study,
is first mentioned by Feigenbaum and Shenker in [10]. A
game-theoretic approach to the network creation problem is
introduced in [8]. Their model is simplified for mathematical
analysis. In their model, the cost of establishing an edge is
the same for all nodes and the distance between two nodes
is the number of hops. They investigate the price of anarchy.
This concept, introduced by Papadimitriou in [11] is the ratio
of the social costs of the worst-case Nash equilibrium and the
social optimum, i.e., the price the participants pay as a group,
for being selfish. They prove upper and lower bounds for this
ratio, and also present a conjecture that says that, if the relative
cost of establishing links is high enough, all Nash equilibria
of the game are trees. Our work bridges this theoretical study
to a practical network creation protocol (e.g., Narada), thus
improving the understanding of selfishly constructed routing
networks.

We analyze the failure and attack tolerance of the networks
created by games. Albert, Jeong, and Barabási first studied the
failure and attack tolerance of the scale-free networks [12].
Park et al. also analyzed the Internet’s susceptibility to faults
and attacks with new metrics [13], one of which we use in
our characterization.

The topological design of (physical) networks has been
widely studied as a centralized optimal design problem [14].
Since the network design is NP-hard, approximation algo-
rithms and heuristics such as genetic algorithms are explored.
Our network creation problem is different in that the optimiza-
tion process is performed among distributed selfish nodes.

III. ROUTING NETWORK CREATION

A. Overlay Routing Network

The overlay routing problem is to find a path with certain
properties (e.g., shortest path) in overlay networks. To see how
routing is determined given the overlay topology, Figure 1
shows two examples of overlay networks over the same phys-
ical topology. Suppose A wants to communicate with D. The
routing path of messages from A to D is different in the two
networks. A’s messages go through B, C, and D in the network
(a) and the path length is 6 physical hops. A has an incentive
to set up a link to D, if the benefit (reduction in distance) is
more than the linking cost. Network (b) is the network after
A sets up the link to D. The path length is only 2 physical
hops. As one can see, the topology of the network significantly
affects the routing performance. Understanding the formation
of overlay networks is the domain of our study in this paper.
Unless a centralized entity dictates how to set up links to
each overlay node, each node needs to determine neighbors
to establish links. Our focus is specifically to understand the
formation of the overlay routing networks when nodes select
links selfishly.

Since the routing is not the focus of our study, we assume
that overlay nodes run a routing protocol to route packets. For
example, in a scenario we investigate, nodes run the link state
protocol.

B. Routing Network Creation Game

We model the network creation game problem as a non-
cooperative game with � nodes (i.e., players) whose strategies
are to select which nodes to connect to. In the game, each
player changes its pure strategy2 to minimize its cost. Our
focus is to investigate resulting network topologies, which are
the Nash equilibria of the games.

The cost model is the most important part of the game. We
generalize the model of [8] in the following ways.

1) The cost to connect to a node
	

is not constant, but a
function of

	
. This allows us to represent, for instance,

congested links, in the sense that it may be more
expensive to connect to popular or congested nodes.

2A pure strategy is one where players deterministically choose their moves.
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2) The “distance” between two nodes may be represented
by other functions than the number of hops (examples
include the monetary cost of the path or the latency).

3) The possible neighbors that a node can connect to
are a subset of all the nodes, which can increase the
tractability of the model.

The cost of a node is a function of the cost paid for links and
the distances from the node to the other nodes. The strategy
of a node, at a given time, is the choice that the node can
make, i.e., the subset of the other nodes in the graph the node
chooses to connect to. Let the set of nodes be � , and let the
set of feasible strategies of node � be ��� . ��� is constrained
to the neighbor candidate set ��� �
	�� ��
 where node � can
establish links (i.e., ������������� ). The total cost incurred by
node � , given a strategy ��� 	 ������� ���"!#!$!#��� %&
 where � �(' � � for
all � ' � is given by

�)� 	 � 
*�,+.-/10 �)23�
4 /)5 %763�-/983:<;>=@? ACB 	 �D� 	 
E� (1)

where �GF�� 	�� ���)�C
 is the set of neighbors of node � , 4 / is
the cost incurred to connect to node

	
, and ;H=<? ACB 	 �D� 	 
 is the

distance from node � to node
	

in the graph IKJ �"L . The distance
from node � to node

	
is M when node

	
is unreachable from

node � . This condition prevents the generated graphs from
being disconnected. In this model, + can be thought of as
the relation between the cost of establishing a link and the
change in distance to other nodes caused by the link. Notice
that its magnitude depends on the units used in these costs,
and also on the size of the network.

The total cost of the graph I is then defined as

� 	 IN
)� %76O�- � 83: � �9	 ��
1� (2)

where �)� 	 ��
 is the cost incurred by node � . This cost is used
to compare Nash equilibria with the social optimum, which is
the graph with smallest total cost.

C. Game Optimization Process

To study the equilibrium graphs created by overlay routing
network creation game, we use an iterative procedure in which
players make decisions based on their current view of the
network in order to select which actions to perform (change
links). We start the game from a connected random graph,
and in each round, each player changes its link configuration
to minimize its cost as given by Equation 1. We employ
two variants of this model in our simulations. The first is
characterized by an exhaustive search of the (exponential)
strategy space, which can only feasibly be used in rather small
topologies. For larger topologies we use a randomized local
search strategy, in which we restrict the set of neighboring
strategies nodes can choose. These procedures are described
in detail below.

a) Exhaustive search: Regarding how nodes choose their
next strategy given the current configuration, ideally all of the
strategy space should be examined, i.e., the node should verify
all possible configurations of the edges existing or not, to all

Algorithm 1 Link Addition for node �
Randomly select node

	
not in the neighborhood of �

Compute �QP�� 4 %�RTS with
	

included
if �QP�� 4�U�V$WYX �QP�� 4 %�RTS[Z]\ then

Add the link

Algorithm 2 Link Dropping for node ��GP ;>^ _ Pa`cb�PDde� X
fg � �h�QP�� 4 �i�QP�� 4�U�V$W
for all node

	
in the neighborhood of � do

Compute �QP�� 4 %�RTS without
	

if
g � �h�QP�� 4hX �QP�� 4 %�RTS Zj\ theng � �h�QP�� 4 �i�QP�� 4 %�RkS�GP ;l^m_ Pa`KbaPDde� 	

if �GP ;>^ _ Pa`cb�PDdonl� X
f
then

Drop the link between � and �GP ;l^ _ Pa`KbaPDd .

other neighbors. Thus, for each node, at each step, there are�7p %763��q different strategies. The time complexity of running the
game in this fashion is exponential in the number of nodes,
and indeed the problem is NP-hard [8].

For small number of nodes, we use exhaustive search to
find Nash equilibria. One node at a time, each node examines
all possible configuration of links that it can drop or add,
and chooses the one with the least cost, given the current
configuration of the network. At each step the nodes take turns
in adding and removing links, using a fixed ordering of action
established in the beginning.

b) Randomized local search: To allow us to run larger
simulations, we replace the exponential-time strategy search
with a local search, a practical overlay protocol, which we
describe next.

We use a randomized local search that can be implemented
in practice. It should be noted that this search may converge to
network configurations that do not meet the Nash condition.
In the randomized local search, the game update procedure
is as follows. We assume each node runs the link state (LS)
protocol. Each node periodically performs the link drop and
link addition procedures. The link drop procedure computes
the minimum of the latency from the node to the other
nodes when each link in the neighborhood is dropped. If the
difference between the minimum value and the old latency
value is less than a threshold ( + ), we drop the link that
gives the minimum value. Then, the link addition procedure
randomly selects a node that is not the previously dropped link
and is not in the neighborhood. It fetches the link state and the
cost

4 / of the contacted node. If the latency improves by more
than + , the link is added in the neighborhood. In addition,
each node has a maximum degree bound. If the chosen node
has already reached the maximum degree bound, the link
cannot be established. The reason for which the procedures
for adding and removing links are different is the information
that is available to the node making the decision. For removing
links, the node has information about all of its neighbors,
and can select the best one. For adding links, information is
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not available for all potential new neighbors, and this is why
a random decision is made regarding which node to probe.
Below we describe the algorithms more precisely.

Link Addition: We randomly choose one node that is not
in the neighborhood of node � , and fetch its link state and cost4 / . We add the link if the cost of node � is reduced by linking
to node

	
. The algorithm is presented as Algorithm 1.

Now, we explain the meaning of the if condition in the algo-
rithm. By replacing �QP�� 4 U�V$W X �QP�� 4 %�RTS with the equation 1,
we get the following inequality when the maximum degree
bound is met.

�QP�� 4 U�V$W X �QP�� 4 %�RkS Zj\
���

%763�-/983: 	 ; =������ 	 �D� 	 
 X ; =�	�

� 	 �D� 	 
9
)Zj+ 4 /
where the �QP�� 4 U�V$W and ; = ����� 	 �D� 	 
 are the cost and the distance
before the new link is added, respectively and �QP�� 4 %�RTS and

; = 	�

� 	 �D� 	 
 are the cost and the distance after the new link is
added, respectively. The cost reduction means that the latency
reduction is greater than + 4 / .

Link Drop: The link drop procedure is presented in Algo-
rithm 2. It computes the node’s cost of a new graph when a
particular link is dropped. It chooses the neighbor that leads
to the minimum cost value that is less than the old value. Note
that the new cost should be reduced if a player wants to move
in the game.

Likewise, we explain the meaning of �QP�� 4 UkV#W X �QP�� 4 %�RTS .
In this case, the cost reduction means that the latency will
increase by less than + 4 / when the node drops a link. The
following relation can be derived.

�QP�� 4 U�V$W X �QP�� 4 %�RkS Zj\
���

%763�-/983: 	 ; = 	�

� 	 ��� 	 
 X ; = ����� 	 �D� 	 
9
��j+ 4 /
This strategy selection represents a generalization of two

similar protocols for an overlay network creation which have
been proposed in the literature, Narada[1] and Gossamer[2].
In Narada, nodes self-organize into an overlay mesh using
a distributed protocol. The protocol optimizes the efficiency
of the overlay by the adaptation mechanisms of individual
nodes. Each node adds a link or drops a link by evaluating
the utility of each link periodically. There are thresholds to
add or drop a link. The threshold values are dependent on the
number of nodes. The difference between our protocol and
Narada is that our protocol also exchanges linking cost values
in addition to routing information. Furthermore, Narada uses
the distance vector (DV) protocol. Since it’s not possible to
compute the increase of the latency when a link is dropped,
the Narada relies on a heuristics to choose a link to drop. If
the LS protocol is used, we can compute the latency increases
when a link is dropped.

IV. CASE STUDIES

Given the large parameter space of the general game model
presented in Section III-B, we divided our study in two

Scenario ������������� Explored Strategy
Parameters Selection

Simple Number � , Exhaustive
of Hops Linking Cost Search

Realistic Latency from � , Randomized
physical topology Max Degree Local Search

TABLE I

SUMMARY OF THE SCENARIOS INVESTIGATED

Cost Model Linking Cost ( ��� )

Unit-Countout 1
Exp-Countout �
�
Unit-Nodedegree �! #"%$
 & '� ���

TABLE II

COST MODELS WE EXAMINE. � IS A NODE LINKED TO BY � . �� &"%$
 # (� ��� IS

THE NUMBER OF EDGES OF � , AND �
� IS THE COST TO CONNECT TO NODE

� , DRAWN FROM AN EXPONENTIAL DISTRIBUTION OF MEAN 1.

scenarios, which are summarized in Table I and described
in more detail in the following subsections. In Section VII
we describe other variations of the model, which we leave as
directions for future work. The simulation results are presented
in Sections V and VI.

A. Simple Scenario

In the first scenario, which we refer to as the ‘simple
scenario’, we assume a ‘simple’ underlying physical topology
where all pairs of physical nodes are connected and the
distance between them is one. In other words, the underlying
topology is a complete graph where all links have the same
cost. The only reason not to establish a connection, in this case,
is the cost incurred in maintaining many connections. We use
this scenario to investigate different linking cost functions (

4 / ),
described below, and summarized in Table II.

Unit-Countout: In this cost function,
4 / � f �*) 	

, and the
node that initiates the connection pays the total cost of the
connection. This is the linking cost studied in [8].

Exp-Countout: In this function, we explore the effect of
node heterogeneity. Each node pays a different amount to
establish a connection depending on the node that is being
connected to. The linking costs are generated from an expo-
nential distribution of mean 1.0. Like the previous model, the
node that initiates connection pays the cost of the link.

Unit-Nodedegree: In this cost function, cost incurred by a
node to create a link depends on the node degree of the node to
connect to. This can be thought of as relating to the congestion
at a node: if there are many links already using a node, then
there is a higher cost (that may represent a higher expected
delay or loss rate), associated with connecting to this node.
The linking cost dynamically changes as the graph changes.
As the node degree of a node grows, it is less likely to acquire
more links. This has the effect of balancing node degrees in
the graph, which may be very desirable, as we show later.

B. Realistic Scenario

In the second scenario, which we call the ‘realistic scenario’,
we use a more realistic underlying topology modeling the
Internet. The strategy selection we use is the randomized local
search described in Section III-B. The linking cost function we
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use in this scenario (Equation 3) is a generalization of Unit-
Countout, in that it allows for a restriction in the maximum
degree nodes can have in the graph. The linking cost

4 / when
node � requests to connect to node

	
, is defined as

4 / �
�� � f ��� ;>^�� b ^ ^ 	 	 
�� g��
	 ` ^�� b ^ ^���
��;>^�� b ^ ^ 	 �T
 � g��
	 ` ^�� b ^�^M P 4�� ^ b��Y�k� ^ !

(3)

where the ;>^�� b ^ ^ 	 	 
 is the degree of node
	

and MaxDegree
is the maximum degree bound of the node. As we shall see
later, limiting the degree has a positive effect in the resilience
of the network.

The underlying topology we use consists of 1000 node
transit-stub physical network topologies generated using the
GT-ITM library [15]. Given the physical topology, we ran-
domly choose nodes in stub domains from the underlying
topology in which to place overlay nodes, and compute the
shortest path latency between all pairs of overlay nodes.
We use these as the distances between nodes in the overlay
network creation game. The delays in the overlay topology
thus obtained are approximately distributed according to a
normal distribution, with mean delay around 328(ms). The
distance ; = 	 �D� 	 
 in the model is the sum of the latencies in
the overlay path between node � and node

	
in this setting.

V. ANALYSIS OF NETWORK FORMATION

In this and in the next section we describe the results of
the simulations for the two scenarios discussed in Section IV,
exploring the parameter space. Here we look at topological
and performance metrics of the equilibrium graphs, and in
Section VI we examine the resilience of the created networks
to failures and attacks.

For each set of parameters, we averaged simulation results
over 50 different initial overlay configurations for the simple
scenario and 100 different initial overlay configurations for
the realistic scenario. In the plots, the errorbars represent one
standard deviation in the value shown. We examine the graphs
in this section through metrics described below.

Graph Cost: Defined in Equation 2, this metric is the total
cost of the graph, i.e., the sum over all nodes of � � . We use
it to compare the graphs generated with the social optimum
graphs.

Node Degree Distribution: This metric is important for its
direct impact on the link stress of the network [1], on the state
maintained by the node, and also, as we show in Section VI,
on the resilience properties of the network.

Characteristic Path Length [16]: Defined as the average
shortest distance among all pairs of nodes, this metric is
important as a performance metric because the latency grows
with the distance to reach other nodes.

Stretch: Defined as the average ratio of the shortest path
latency in the overlay network to the shortest path latency
in the physical network, this is also a performance metric. It
measures, given the underlying topology, the efficiency of the
overlay paths.

A. Simple Scenario

We analyze the equilibrium graphs in the simple scenario
for the three linking cost functions as we increase + . We ran
simulations involving 20 nodes using the exhaustive strategy
search described in Section III, varying linking cost functions
(
4 / ) and + values. The characteristics for the smaller networks

followed similar trends. We leave the study of larger networks
for the realistic scenario. Figure 2 shows sample equilibrium
graphs we obtained, and the diverse topologies that can be
generated by the game. Figure 3 shows the histogram of the
degree distribution for sample graphs, for different parameter
values. We refer to these figures throughout the evaluation of
the graph characteristics.

The total cost of the graphs is shown in Figure 4. As the
nodes optimize for their own cost, one can examine how the
total cost of the resulting networks compares to that of the
social optimum. The curves labeled ‘Optimum’ in the figure
are the results of the nodes optimizing for the total cost of
the graph, rather than for their own, an approximation of the
social optimum. The cost of the graphs produced by the Unit-
Countout game does not seem to asymptotically differ from
the cost found with the global optimization by more than a
constant. This is not true for the case of the Unit-Nodedegree
model, and this fact is an indicative that it is important
to consider factors such as the dynamic and heterogeneous
characteristics of networks when studying the price of anarchy
in these systems. The cost of Exp-Countout grows with high + ,
the reason being that with low + the links are always created
to the nodes with the least cost.

We now move to examining the topological properties of the
graphs. At a high level, the first two linking cost functions,
Unit-Countout and Exp-Countout have the tendency to form
star-shaped graphs, in which one or a few nodes have (very)
high connectivity, and the others have no incentive to form
additional links. This can be easily seen in Figure 2. The
graphs in the Unit-Nodedegree cost model never form stars,
and always have more balanced degree distributions. This
does, however, come at the cost of longer path lengths. Also,
for sufficiently high values of + , all equilibrium graphs for the
three cases are trees, albeit with different properties. These
findings are discussed in more detail below, for the three
linking cost functions.

Unit-Countout: We observe 4 main phases as + increases.
Our results are in line with the theoretical results in [8], since
their model is equivalent to our simple scenario with this
linking cost function.

When + � f
, all equilibrium graphs are complete graphs,

as adding an edge is always cheaper than having to traverse
at least two hops to a non-neighbor node. This can be seen
in Figure 5, which shows the characteristic path length of the
graphs. We can see that the characteristic path length is one for
this range of + in the Unit-Countout curve. We can also see
that all nodes, for Unit-Countout, with +o� \&!�� , have degree
of 19 (Figure 3(a)).

When
f�� + �j� , all equilibrium graphs have path length of

at most 2 [8]. We obtained dense graphs, with characteristic
path lengths between 1 and 2 (Figure 5). An example such
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Fig. 2. Sample equilibrium graphs for the simple scenario with 20 nodes, for the different cost models and values of � . With Exp-Countout
and ��� � , we could not find an Nash equilibrium in our experiments.
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(e) Exp-Countout, ����
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(h) Unit-Nodedegree, �����
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Fig. 3. Histograms of the node degree distributions for the simple scenario. On the top, the phases of Unit-Countout: complete graph (a),
dense graph (b), star (c), and ‘leafy’ tree (d). Exp-Countout (e-g) goes through � -core stars, and Unit-Nodedegree (h-k) produces much more
degree-balanced graphs.

graph can be seen in Figure 2, for Unit-Countout and + � f
.

For +�� � , a sharp transition occurs, as the social optimum
shifts from being the complete graph to the star [8]. From
Figure 5, we notice a flat region for + between 2 and 15,
with characteristic path length of 2. Indeed, if we look at
the corresponding sample graphs in Figure 2, and at the node
degree distributions in Figure 3, we see examples of stars.

Finally, for even larger + values, another shift happens,

when even the star becomes expensive to maintain, and tree
topologies in which most of the nodes are leaves start to
appear. These have longer characteristic path lengths, but the
distribution of degrees is still very skewed. We discuss the
implications of this topology, and of the star, for the resilience
of the network in Section VI.

Exp-Countout: In this cost function, as described in Sec-
tion IV, nodes are not created equal: the cost of linking

6
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Fig. 4. Total graph cost for the three linking cost functions. Note that
for the three linking cost functions, the cost asymptotes to a linear
function of � .

Fig. 5. Characteristic path length (CPL) for simple game scenario, for
the three linking cost functions and different values of � . Complete
graphs have CPL of 1, stars present CPL close to 2, and graphs with
longer cycles or chains present higher CPL.

to nodes is distributed exponentially. We observe a very
strong tendency towards the formation of star-like topologies,
specifically topologies we call � -core stars3. What happens is
that all nodes choose to connect to the � nodes with the least
linking cost, and the number � of links a node can afford to
establish depends on + . There is a smooth transition from the
complete graph to a star. At any point, the nodes that form
the core are always the cheapest nodes. This can be clearly
observed in Figures 2 and 3, in the middle row.

Unit-Nodedegree: In this last linking cost function, we recall
that the cost to link to a node is an increasing function of the
degree of the node, which may be thought of as representing
the desire to avoid congestion. Across all values of + we
observe a more even distribution of node degrees, concentrated
around a central value, as can be seen in the bottom row of
Figure 3. In the transition from complete graphs to trees, as we
increase + , the graphs are never stars. In fact, as we observed
for + � � , with the 20 nodes topology, many graphs had
all nodes with the same node degree of 3. Another observed
characteristics of the graphs, as can be seen in Figure 2, is that
they tend to form longer cycles. We verified that for + � f

,
no graphs have cycles of length

���
(triangles).

By looking at Figure 5, the characteristic path length for
Unit-Nodedegree grows as + increases. When + is high
enough, we observe trees that tend to have longer branches
and no nodes with too high degree. In comparison with the
trees formed by Unit-Countout, there are more internal nodes
in the trees and less leaves. As we discuss in Section VI, these
trees with longer chains are more resilient to attacks than more
leafy trees.

B. Realistic Scenario

In this section, we consider a more realistic network setting
and show that it exhibits the same qualitative behavior as the
simple scenario. We ran simulations involving 50 and 100
overlay nodes varying + and the maximum node degree bound

3These are graphs with a clique of size � that forms a core to which all
other ‘leaf’ nodes are connected.

(MaxDegree) with 1000 node transit-stub physical network
topologies. We present simulation results for 100 nodes, since
the trends of results for 50 nodes are similar. We varied + from
200 to 20000 and we varied MaxDegree between 10 and 100.
Since the distance metric in the cost model is latency, in the
game, the unit of + is ms. Figure 6 shows sample equilibrium
graphs we obtained, and Figure 7 shows the histogram of the
degree distribution for sample graphs, for different parameter
values. We refer to these figures throughout the evaluation of
the graph characteristics for the realistic scenario.

We first look at the stretch. The stretch decreases as +
decreases and it decreases as MaxDegree increases (Figure 8).
Specifically, when + is small and MaxDegree is large, the
stretch approaches the optimum value. In the overlay protocol,
if + is small, the node is likely to add links, since it has a
higher chance of finding a new node that reduces the distance
enough. However, the node is not likely to drop links, since it
has a higher chance of increasing the distance over + . On the
contrary, if + is large, the node is not likely to add links, since
it is hard to find a new node that reduces the distance by large
amount. However, it is likely to drop a link to the neighbor,
since the increase in the distance is likely to be less than + .
Therefore, when + is small, the protocol tends to have more
links, thus decreasing the stretch. When MaxDegree is large,
the game process can find the nodes near the center that many
peripheral nodes can benefit by establishing links to. These
core nodes can be shortcuts to other nodes, thus reducing the
stretch.

To better understand why stretch is different, we look at the
node degree distribution and the sample equilibrium graphs.
Figure 7 shows the histogram of node degree. When + is small
(e.g., 200), the node degree distribution becomes skewed due
to the maximum degree bound. When MaxDegree is 10, the
peak is 10, and the frequency decreases rapidly as degree
value decreases. When MaxDegree is 30, the distribution is
multi-modal. When there is no constraint on the degree bound,
the degree distribution resembles exponential distribution with
several nodes of high degree. As there are more high degree
nodes, there are more short paths to other nodes. As + becomes

7
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Fig. 6. Sample equilibrium graphs created in the realistic scenario. The network has 100 nodes, and we vary the maximum degree bound,
as well as the � parameter.
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(c) � =200, MaxDegree=100
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(d) � =2000, MaxDegree=10
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Fig. 7. Histogram of node degree distributions for the realistic scenario, for different values of � and MaxDegree.

large (e.g, 2000), the degree distribution becomes very skewed
with the peak value of 3 or 4. Therefore, the stretch becomes
larger. In the case of MaxDegree of 100, there are still a
few nodes of high degree, which reduces latency. For further
understanding, we present the sample equilibrium graphs in
Figure 6. When MaxDegree is 100, the graph has a few cores
that connect most of the nodes. However, when MaxDegree is
10, each node has multiple links to other nodes and there are
no central points unless + is very large. In this case, more
nodes need to establish many links (e.g., more than 3) to
maintain fair stretch. The overall trends of the graph forms
are similar to those of the Nash equilibria produced by the
Unit-Countout linking cost in the simple scenario, although
degree bound is imposed. As + decreases, the graphs at Nash

equilibria transform from trees to almost � -regular graphs.4

To characterize the resulting graph topologies by comparing
with widely known topologies, we also examined the tail of the
node degree distribution. Figure 9 shows the tail distribution
of the node degree when the game does not constrain degree
bound, i.e., MaxDegree is 100. We plot three lines, for + of
200, 800, and 2000. The graph is shown in a log-log scale, and
the curves indicate, for a given node degree ; , the fraction of
nodes with degree greater than ; . We also show, for reference,
the curves for the tail of an exponential distribution, and of
a Pareto (power-law) distribution. For + =200, the distribution
is not very skewed, and its tail decays in a similar fashion to
the exponential distribution. When + =2000, the decay in the
distribution is much more pronounced, and exhibits similar

4 � -regular graphs are ones in which all nodes have the same degree � ����� � .
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Fig. 9. Tail of the distribution of node degree, for the realistic
scenario, and unrestricted node degree. For a low value of � , the
tail has exponential decay, while for a high value of � the decay
approximately follows a power-law.

behavior to that of the Pareto distribution. This is an important
finding, since the game can be a way to create power-law
graphs. These results are obtained when we create overlay
networks on top of the GT-ITM topology. We are currently
investigating the degree distributions for other underlying
topologies. While we do not have enough evidence to prove
such behavior, we conjecture that these distributions are not
an artifact of the particular network used here. We leave more
complete investigations on this subject, including using real
Internet measurements for latencies, for future work.

Lastly, we present control overhead to evaluate the state
maintenance overhead of the created networks compared to
complete graphs. The control overhead is defined as the
number of messages exchanged in the network created by
the game normalized by the number of messages exchanged
in the complete graph. The overhead is proportional to the
number of links in the network. In Figure 10, the overhead is
maximum 8 � and decreases to 1 � . The created networks have
good properties even though they use only a small percentage
of links among the total number of possible links. Overall,
networks under high MaxDegree have lower overhead than
those under low MaxDegree, since fewer number of edges are
established in the networks under high MaxDegree. When the
low degree bound is applied, the control overhead is saturated
as + becomes small. At this stage, the most of nodes in the
network have links of MaxDegree.

VI. ANALYSIS OF FAILURE AND ATTACK TOLERANCE

In this section, we analyze the failure and attack tolerance
of the Nash equilibrium networks. To evaluate the tolerance,
we use the � metric presented in [13]. � is the ratio of all
connected node-pairs in the network over the total number of
distinct node-pairs in the network. This is used to characterize
the whole network connectivity under certain percentages of
node failures or attacks. For failures, we remove a fraction of
randomly selected nodes. For attacks, we remove a fraction of
nodes, starting from the node with the largest degree, followed
by the next largest, and so on.
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Fig. 10. Control overhead. In general, networks under higher
MaxDegree have lower overhead. We also observe the overhead is
saturated under small � and low MaxDegree.

A. Simple Scenario

In the simple scenario, we evaluate the effects that failures
and attacks of nodes have on the graphs produced by the
different linking cost functions, for different values of + .
Looking again at Figure 2, we can gain intuition in the
resilience properties to be expected. Let us look at the three
graphs for + � f \ , for example. Unit-Countout and Exp-
Countout show star-like topologies, while Unit-Nodedegree
shows a graph with long chains. If nodes are taken down
randomly, the star topologies will most likely suffer the least,
since a very small fraction of the nodes are really important
for connectivity. However, if the most connected nodes are
attacked, it is easy to see that the star topologies will collapse,
while the Unit-Nodedegree generated topology will still have
a good fraction of its nodes connected among themselves.

Figure 11(a) shows the value of � when 10% of the nodes
are subject to failure. The results for other fractions of nodes
taken down are very similar. The � -core star topologies created
by the Exp-Countout model are the most resilient to failures,
as we just discussed. Similarly, the star and the ‘leafy’ tree
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Fig. 11. Failure and attack tolerance (a) K when 10 � of nodes fail, (b) K when 10 � of nodes are attacked
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Fig. 12. Failure and attack tolerance (a) K when 10 � of nodes fail, (b) K when 10 � of nodes are attacked

topologies created by Unit-Countout are resilient to failures,
since most nodes are leaves.

More degree-balanced graphs produced by Unit-Nodedegree
are less resilient to failures, as more nodes are important for
connectivity. However, when it comes to resilience to attacks,
the cost in longer paths and lower resilience to failure pays
off. Figure 11(b) shows the value of � when the 10% most
connected nodes are attacked. The situation is reversed in this
case, as the stars are very susceptible to attacks: some nodes
are very important for connectivity and the network collapses
when they are taken down. Comparing Figures 5 and 11(b),
we see that exactly when the graphs are stars (and the path
length is close to 2), � is equal to 0 (since removing the
center node disconnects all others).

There is an interesting phenomenon in the resilience to
attacks of the graphs created by the Unit-Nodedegree games.
The graphs for +,� 2 are the most resilient to both failures
and attacks. By examining the topologies and the node degree
distributions, we see that when + � f

, the equilibrium graphs
have long cycles, and some nodes have a tendency to have
more links than others (see Figure 3(h)). When + � � ,
however, the distribution of node degrees becomes much more
centered around a single value. We observed graphs in which
all nodes had degree 3. In this case, the attack is equivalent

to failure, since all nodes have the same degree.

B. Realistic Scenario

The equilibrium networks achieve good performance (low
stretch) at the cost of lower resilience of the networks.
Figure 12 shows K when 10 � of nodes fail and K when
10 � of nodes are attacked in the realistic scenario. The
networks restricted by MaxDegree of 10 have the highest
failure tolerance (Figure 12(a)). When + is 5000, the difference
among different MaxDegree’s in the failure tolerance is the
largest, but the difference diminishes as + gets smaller or
larger. As shown in Figure 7, if a node is randomly selected for
removal, the chance of removing the very high degree nodes is
small, thus the difference in the tolerance decreases. However,
the attack tolerance shows striking results (Figure 12(b)).
The networks with the lowest stretch have the worst attack
tolerance. They lose their connectivity among nodes rapidly
as + increases. The attack tolerance graphs shift right as
we decrease MaxDegree. Imposing node degree bounds is
key to create networks with good attack tolerance property.
The node degree distribution and sample graphs show the
effects of attack in a straightforward way. When + is 2000
and MaxDegree is 100, by taking down a few high degree
nodes, the network is completely disconnected, since most
of the nodes have low degree and they are connected to the
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high degree nodes. On the contrary, when + is 2000 and
MaxDegree is 10, each node is well connected to several other
nodes. There is no vulnerable core that significantly affects the
connectivity of the network under attacks.

VII. DISCUSSION AND FUTURE WORK

We show that wide variety of linking cost functions create
overlay networks with diverse properties such as low stretch,
balanced degree distribution, and high failure or attack re-
silience. Some examples are k-regular graphs, k-core stars,
trees, and graphs whose degree distributions have tails with
decay ranging from exponential to power-law.

Exp-Countout creates graphs with cores comprising nodes
with small linking cost values. Such nodes can be more power-
ful nodes than others, and games can exploit the heterogeneity.
On the contrary, Unit-Nodedegree can produce graphs with
balanced degrees without hot spots and nodes too vulnerable
to attacks. Depending on the goals, one can use other vari-
ations of linking cost (

4 / ) functions, which is an interesting
research question. For example, the product of a heterogeneous
constant linking cost term and the node degree may get the
benefit of both Exp-Countout and Unit-Nodedegree, exploiting
heterogeneities with balanced load distribution among nodes.
We also observe interesting relationships between linking cost
functions. Unit-Nodedegree with small + creates � -regular
graphs that can be produced by MaxDegree bound. Indeed,
one can use an increasing function of node degree as an
approximation for MaxDegree.

The exploration of Nash equilibria in the realistic scenario
was restricted due to the limits on computation. If the interac-
tion among agents are constrained, the computation depends
on the size of the neighborhood candidate set, even if the net-
work size is large. We intend to study the effect of constrained
neighborhood candidate sets on the Nash equilibria.

We also found out that there is an important tradeoff
between performance and resilience in the networks. The
more the node degrees are balanced, the more resilient the
network is to attacks. In the simple scenario, Unit-Nodedegree
produces graphs with longer paths, more balanced degree
distributions, and higher resilience to attacks. In the realistic
scenario, limiting the degree achieves higher resilience, for
similar reasons, at the cost of higher stretch. An overlay
routing network among multiple parties can be created to
meet its target goals by exploiting this tradeoff. If the most
important requirement of the overlay routing network is low
stretch, one can choose high MaxDegree and low + . To be
resilient to attacks and failures, the game should impose low
MaxDegree, forcing nodes to establish redundant links.

There are plenty of other interesting directions for future
work. We want to further study the relationship between
characteristics of the underlying topology and the produced
overlay topologies. The current game is run with a fixed
number of players. We want to examine the game in a dynamic
network where the total number of nodes changes over time
due to node joins and leaves. Another interesting area is to
take traffic into consideration. If there is no traffic between
two nodes, there may be little incentive to set up a link. We

also intend to apply the model to other scenarios, e.g., overlay
networks created by minimizing the path failure probabilities.
Finally, we want to examine mechanism designs to provide
nodes no incentive to tell lies about linking cost values.

VIII. CONCLUSIONS

In this work we characterize selfishly constructed overlay
routing networks. We use a non-cooperative game model
to evaluate such networks and examine the effects of the
underlying topology and different linking cost functions in the
resulting Nash equilibria of the game. We find that the games
can produce widely different networks, from complete graphs
to trees with different properties. For the realistic scenario,
varying the + parameter in the cost model produces networks
with degree distribution with tails ranging from exponential to
power-law distributions. We show that the networks obtained
can present desirable properties, with respect to stretch and
resilience, even though nodes are not interested in such global
properties. We also find that there is a fundamental tradeoff
between these two metrics, and that it can be controlled by
restricting the maximum node degree. This tradeoff can be
exploited to construct overlay routing networks that satisfy
diverse requirements.
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